{"title":"量子化Banach代数的一个全局维数定理","authors":"Trudy Moskov, N. Volosova","doi":"10.1090/S0077-1554-09-00174-5","DOIUrl":null,"url":null,"abstract":". We prove that for a commutative quantized ( h ⊗ and o ⊗ ) algebra with infinite spectrum, the maximum of its left and right global homological dimensions and, as a consequence, its homological bidimension are strictly greater than one. This result is a quantum analog of the global dimension theorem of A. Ya. Helemskii.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"70 1","pages":"207-235"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-09-00174-5","citationCount":"1","resultStr":"{\"title\":\"A global dimension theorem for quantized Banach algebras\",\"authors\":\"Trudy Moskov, N. Volosova\",\"doi\":\"10.1090/S0077-1554-09-00174-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We prove that for a commutative quantized ( h ⊗ and o ⊗ ) algebra with infinite spectrum, the maximum of its left and right global homological dimensions and, as a consequence, its homological bidimension are strictly greater than one. This result is a quantum analog of the global dimension theorem of A. Ya. Helemskii.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"70 1\",\"pages\":\"207-235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/S0077-1554-09-00174-5\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0077-1554-09-00174-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-09-00174-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
A global dimension theorem for quantized Banach algebras
. We prove that for a commutative quantized ( h ⊗ and o ⊗ ) algebra with infinite spectrum, the maximum of its left and right global homological dimensions and, as a consequence, its homological bidimension are strictly greater than one. This result is a quantum analog of the global dimension theorem of A. Ya. Helemskii.