{"title":"半单代数群的优秀仿射球面齐次空间","authors":"R. Avdeev","doi":"10.1090/S0077-1554-2010-00183-5","DOIUrl":null,"url":null,"abstract":"A spherical homogeneous spaceG/H of a connected semisimple algebraic group G is called excellent if it is quasi-affine and its weight semigroup is generated by disjoint linear combinations of the fundamental weights of the group G. All the excellent affine spherical homogeneous spaces are classified up to isomorphism.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"71 1","pages":"209-240"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Excellent affine spherical homogeneous spaces of semisimple algebraic groups\",\"authors\":\"R. Avdeev\",\"doi\":\"10.1090/S0077-1554-2010-00183-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spherical homogeneous spaceG/H of a connected semisimple algebraic group G is called excellent if it is quasi-affine and its weight semigroup is generated by disjoint linear combinations of the fundamental weights of the group G. All the excellent affine spherical homogeneous spaces are classified up to isomorphism.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"71 1\",\"pages\":\"209-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/S0077-1554-2010-00183-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2010-00183-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Excellent affine spherical homogeneous spaces of semisimple algebraic groups
A spherical homogeneous spaceG/H of a connected semisimple algebraic group G is called excellent if it is quasi-affine and its weight semigroup is generated by disjoint linear combinations of the fundamental weights of the group G. All the excellent affine spherical homogeneous spaces are classified up to isomorphism.