GPU计算与OpenCL建模二维弹性波传播:探索内存使用

U. Iturrarán-Viveros, M. Molero-Armenta
{"title":"GPU计算与OpenCL建模二维弹性波传播:探索内存使用","authors":"U. Iturrarán-Viveros, M. Molero-Armenta","doi":"10.1088/1749-4699/8/1/014006","DOIUrl":null,"url":null,"abstract":"Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"8 1","pages":"014006"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4699/8/1/014006","citationCount":"4","resultStr":"{\"title\":\"GPU computing with OpenCL to model 2D elastic wave propagation: exploring memory usage\",\"authors\":\"U. Iturrarán-Viveros, M. Molero-Armenta\",\"doi\":\"10.1088/1749-4699/8/1/014006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.\",\"PeriodicalId\":89345,\"journal\":{\"name\":\"Computational science & discovery\",\"volume\":\"8 1\",\"pages\":\"014006\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1749-4699/8/1/014006\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational science & discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1749-4699/8/1/014006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4699/8/1/014006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,图形处理单元(gpu)变得越来越强大。探索这种体系结构优势的程序可以获得很大的性能提升,这也是高性能计算领域新举措的目标。本工作的目的是开发一种有效的工具来模拟二维弹性波在并行计算设备上的传播。为此,我们使用工业开放标准开放计算语言(OpenCL)实现弹性动力有限积分技术,用于现代处理器的跨平台、并行编程,以及一个名为[Py]OpenCL的开源工具包。用[Py]OpenCL编写的代码可以在各种各样的平台上运行;它可以在AMD或NVIDIA gpu以及经典的多核cpu上使用,适应底层架构。我们的主要贡献是它在本地和全局内存上的实现,以及使用五种不同的计算设备(包括最快、最高效的高性能计算技术之一Kepler)和各种操作系统进行的性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU computing with OpenCL to model 2D elastic wave propagation: exploring memory usage
Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信