{"title":"晶格上威尔逊费米子矩阵的各向异性预处理","authors":"B. Joó, R. Edwards, M. Peardon","doi":"10.1088/1749-4699/3/1/015001","DOIUrl":null,"url":null,"abstract":"A preconditioning for the Wilson fermion matrix on the lattice is defined, which is particularly suited to the case when the temporal lattice spacing is much smaller than the spatial one. Details on the implementation of the scheme are given. The method is tested in numerical studies of quantum chromodynamics on anisotropic lattices.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"3 1","pages":"015001"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4699/3/1/015001","citationCount":"1","resultStr":"{\"title\":\"An anisotropic preconditioning for the Wilson fermion matrix on the lattice\",\"authors\":\"B. Joó, R. Edwards, M. Peardon\",\"doi\":\"10.1088/1749-4699/3/1/015001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A preconditioning for the Wilson fermion matrix on the lattice is defined, which is particularly suited to the case when the temporal lattice spacing is much smaller than the spatial one. Details on the implementation of the scheme are given. The method is tested in numerical studies of quantum chromodynamics on anisotropic lattices.\",\"PeriodicalId\":89345,\"journal\":{\"name\":\"Computational science & discovery\",\"volume\":\"3 1\",\"pages\":\"015001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1749-4699/3/1/015001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational science & discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1749-4699/3/1/015001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4699/3/1/015001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An anisotropic preconditioning for the Wilson fermion matrix on the lattice
A preconditioning for the Wilson fermion matrix on the lattice is defined, which is particularly suited to the case when the temporal lattice spacing is much smaller than the spatial one. Details on the implementation of the scheme are given. The method is tested in numerical studies of quantum chromodynamics on anisotropic lattices.