存在空间相关性的时空生物监测的鲁棒无分布多元CUSUM图

M. Lee, D. Goldsman, Seong-Hee Kim
{"title":"存在空间相关性的时空生物监测的鲁棒无分布多元CUSUM图","authors":"M. Lee, D. Goldsman, Seong-Hee Kim","doi":"10.1080/19488300.2015.1017674","DOIUrl":null,"url":null,"abstract":"Multivariate CUSUM (MCUSUM) charts with fixed and variable scan radii have been used to detect increases of disease incidence counts in spatiotemporal biosurveillance. Biosurveillance through MCUSUM charts often requires intensive modeling of the monitored process, which can be challenging in cases involving a large number of monitored regions, an arbitrary marginal data distribution, and spatial correlation. Unlike other MCUSUM charts in the literature which assume a multivariate normal distribution for the disease count data, the MCUSUM chart we suggest in this paper is robust to non-normal distributions such as the Poisson. Our chart does not require extensive modeling of the underlying process and searches for its control limits via simple simulation and interpolation. While maintaining satisfactory accuracy of its control limits, the chart provides reliable performance under various data distributions, scan radii, and spatial correlation structures.","PeriodicalId":89563,"journal":{"name":"IIE transactions on healthcare systems engineering","volume":"5 1","pages":"74 - 88"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19488300.2015.1017674","citationCount":"10","resultStr":"{\"title\":\"Robust distribution-free multivariate CUSUM charts for spatiotemporal biosurveillance in the presence of spatial correlation\",\"authors\":\"M. Lee, D. Goldsman, Seong-Hee Kim\",\"doi\":\"10.1080/19488300.2015.1017674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate CUSUM (MCUSUM) charts with fixed and variable scan radii have been used to detect increases of disease incidence counts in spatiotemporal biosurveillance. Biosurveillance through MCUSUM charts often requires intensive modeling of the monitored process, which can be challenging in cases involving a large number of monitored regions, an arbitrary marginal data distribution, and spatial correlation. Unlike other MCUSUM charts in the literature which assume a multivariate normal distribution for the disease count data, the MCUSUM chart we suggest in this paper is robust to non-normal distributions such as the Poisson. Our chart does not require extensive modeling of the underlying process and searches for its control limits via simple simulation and interpolation. While maintaining satisfactory accuracy of its control limits, the chart provides reliable performance under various data distributions, scan radii, and spatial correlation structures.\",\"PeriodicalId\":89563,\"journal\":{\"name\":\"IIE transactions on healthcare systems engineering\",\"volume\":\"5 1\",\"pages\":\"74 - 88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19488300.2015.1017674\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE transactions on healthcare systems engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19488300.2015.1017674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE transactions on healthcare systems engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19488300.2015.1017674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在时空生物监测中,固定和可变扫描半径的多变量CUSUM (MCUSUM)图已被用于检测疾病发病率计数的增加。通过MCUSUM图表进行生物监测通常需要对监测过程进行密集建模,这在涉及大量监测区域、任意边缘数据分布和空间相关性的情况下可能具有挑战性。与文献中假设疾病计数数据为多元正态分布的其他MCUSUM图不同,我们在本文中建议的MCUSUM图对泊松等非正态分布具有鲁棒性。我们的图表不需要对基础过程进行广泛的建模,并通过简单的模拟和插值来搜索其控制极限。在保持其控制范围的满意精度的同时,该图表在各种数据分布、扫描半径和空间相关结构下提供了可靠的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust distribution-free multivariate CUSUM charts for spatiotemporal biosurveillance in the presence of spatial correlation
Multivariate CUSUM (MCUSUM) charts with fixed and variable scan radii have been used to detect increases of disease incidence counts in spatiotemporal biosurveillance. Biosurveillance through MCUSUM charts often requires intensive modeling of the monitored process, which can be challenging in cases involving a large number of monitored regions, an arbitrary marginal data distribution, and spatial correlation. Unlike other MCUSUM charts in the literature which assume a multivariate normal distribution for the disease count data, the MCUSUM chart we suggest in this paper is robust to non-normal distributions such as the Poisson. Our chart does not require extensive modeling of the underlying process and searches for its control limits via simple simulation and interpolation. While maintaining satisfactory accuracy of its control limits, the chart provides reliable performance under various data distributions, scan radii, and spatial correlation structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信