表征预测分析在促进医院病人流动方面的价值

J. Peck, J. Benneyan, D. Nightingale, S. Gaehde
{"title":"表征预测分析在促进医院病人流动方面的价值","authors":"J. Peck, J. Benneyan, D. Nightingale, S. Gaehde","doi":"10.1080/19488300.2014.930765","DOIUrl":null,"url":null,"abstract":"We apply discrete event simulation to characterize the patient flow affects of using admission predictions and current state information, generated in an Emergency Department (ED), to influence the prioritization of inpatient unit (IU) physicians between treating and discharging IU patients. Shared information includes crowding levels and total expected bed need (based on the sum of individual patients’ imperfect admission predictions and perfect admission predictions). It is found that sharing prediction and crowding information to influence inpatient staff priorities, using specific information sensitivity schedules, can result in statistically significant (p ≪ 0.05) reductions in boarding time (between 11.69% and 18.38% compared to baseline performance). The range of improvement is dependent on varying simulated hospital configurations.","PeriodicalId":89563,"journal":{"name":"IIE transactions on healthcare systems engineering","volume":"4 1","pages":"135 - 143"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19488300.2014.930765","citationCount":"35","resultStr":"{\"title\":\"Characterizing the value of predictive analytics in facilitating hospital patient flow\",\"authors\":\"J. Peck, J. Benneyan, D. Nightingale, S. Gaehde\",\"doi\":\"10.1080/19488300.2014.930765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply discrete event simulation to characterize the patient flow affects of using admission predictions and current state information, generated in an Emergency Department (ED), to influence the prioritization of inpatient unit (IU) physicians between treating and discharging IU patients. Shared information includes crowding levels and total expected bed need (based on the sum of individual patients’ imperfect admission predictions and perfect admission predictions). It is found that sharing prediction and crowding information to influence inpatient staff priorities, using specific information sensitivity schedules, can result in statistically significant (p ≪ 0.05) reductions in boarding time (between 11.69% and 18.38% compared to baseline performance). The range of improvement is dependent on varying simulated hospital configurations.\",\"PeriodicalId\":89563,\"journal\":{\"name\":\"IIE transactions on healthcare systems engineering\",\"volume\":\"4 1\",\"pages\":\"135 - 143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19488300.2014.930765\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE transactions on healthcare systems engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19488300.2014.930765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE transactions on healthcare systems engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19488300.2014.930765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

我们应用离散事件模拟来表征使用入院预测和急诊科(ED)产生的当前状态信息来影响住院单位(IU)医生在治疗和出院IU患者之间的优先级的患者流影响。共享的信息包括拥挤程度和总预期床位需求(基于个别患者的不完美入院预测和完美入院预测的总和)。研究发现,利用特定的信息敏感性表,共享预测和拥挤信息以影响住院医务人员的优先级,可以显著(p≪0.05)减少登机时间(与基线性能相比,减少11.69%至18.38%)。改进的范围取决于不同的模拟医院配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing the value of predictive analytics in facilitating hospital patient flow
We apply discrete event simulation to characterize the patient flow affects of using admission predictions and current state information, generated in an Emergency Department (ED), to influence the prioritization of inpatient unit (IU) physicians between treating and discharging IU patients. Shared information includes crowding levels and total expected bed need (based on the sum of individual patients’ imperfect admission predictions and perfect admission predictions). It is found that sharing prediction and crowding information to influence inpatient staff priorities, using specific information sensitivity schedules, can result in statistically significant (p ≪ 0.05) reductions in boarding time (between 11.69% and 18.38% compared to baseline performance). The range of improvement is dependent on varying simulated hospital configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信