改变肿瘤几何形状和分数大小限制的自适应调强放射治疗计划优化

Behlul Saka, R. Rardin, M. Langer, Delal Dink
{"title":"改变肿瘤几何形状和分数大小限制的自适应调强放射治疗计划优化","authors":"Behlul Saka, R. Rardin, M. Langer, Delal Dink","doi":"10.1080/19488300.2011.609871","DOIUrl":null,"url":null,"abstract":"The modern approach of delivering radiation treatments through intensity modulated radiotherapy (IMRT) requires a computationally complex planning process. Intensities must be chosen for the many small unit grids into which the beams are divided to produce a desired distribution of dose at points throughout the body. To achieve desired aims, attention must be paid to both the cumulative doses and the doses delivered in each separate treatment session. The time horizon for the treatment allows for periodic re-imaging of the tumor geometry and for adapting the treatment plan accordingly. We present a promising iterative optimization approach that re-optimizes and updates the treatment plan periodically by incorporating the latest tumor geometry information. Two realistic lung cases simulating practice, based on anonymized archive datasets, are used to test the effectiveness of our adaptive planning approach. The computed plans both satisfy cumulative and per-session dose constraints while improving the objective (average tumor dose).","PeriodicalId":89563,"journal":{"name":"IIE transactions on healthcare systems engineering","volume":"1 1","pages":"247 - 263"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19488300.2011.609871","citationCount":"12","resultStr":"{\"title\":\"Adaptive intensity modulated radiation therapy planning optimization with changing tumor geometry and fraction size limits\",\"authors\":\"Behlul Saka, R. Rardin, M. Langer, Delal Dink\",\"doi\":\"10.1080/19488300.2011.609871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modern approach of delivering radiation treatments through intensity modulated radiotherapy (IMRT) requires a computationally complex planning process. Intensities must be chosen for the many small unit grids into which the beams are divided to produce a desired distribution of dose at points throughout the body. To achieve desired aims, attention must be paid to both the cumulative doses and the doses delivered in each separate treatment session. The time horizon for the treatment allows for periodic re-imaging of the tumor geometry and for adapting the treatment plan accordingly. We present a promising iterative optimization approach that re-optimizes and updates the treatment plan periodically by incorporating the latest tumor geometry information. Two realistic lung cases simulating practice, based on anonymized archive datasets, are used to test the effectiveness of our adaptive planning approach. The computed plans both satisfy cumulative and per-session dose constraints while improving the objective (average tumor dose).\",\"PeriodicalId\":89563,\"journal\":{\"name\":\"IIE transactions on healthcare systems engineering\",\"volume\":\"1 1\",\"pages\":\"247 - 263\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19488300.2011.609871\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE transactions on healthcare systems engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19488300.2011.609871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE transactions on healthcare systems engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19488300.2011.609871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

通过调强放疗(IMRT)提供放射治疗的现代方法需要一个计算复杂的计划过程。必须选择许多小单元网格的强度,使光束被分成许多小单元网格,以在全身各点产生所需的剂量分布。为了达到预期的目的,必须注意累积剂量和在每次单独治疗期间给予的剂量。治疗的时间范围允许定期对肿瘤几何形状进行重新成像,并相应地调整治疗计划。我们提出了一种有前途的迭代优化方法,通过结合最新的肿瘤几何信息周期性地重新优化和更新治疗计划。基于匿名档案数据集,用两个真实的肺病例模拟实践来测试我们的自适应规划方法的有效性。计算方案既满足累积剂量约束,又满足每次剂量约束,同时提高了目标(平均肿瘤剂量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive intensity modulated radiation therapy planning optimization with changing tumor geometry and fraction size limits
The modern approach of delivering radiation treatments through intensity modulated radiotherapy (IMRT) requires a computationally complex planning process. Intensities must be chosen for the many small unit grids into which the beams are divided to produce a desired distribution of dose at points throughout the body. To achieve desired aims, attention must be paid to both the cumulative doses and the doses delivered in each separate treatment session. The time horizon for the treatment allows for periodic re-imaging of the tumor geometry and for adapting the treatment plan accordingly. We present a promising iterative optimization approach that re-optimizes and updates the treatment plan periodically by incorporating the latest tumor geometry information. Two realistic lung cases simulating practice, based on anonymized archive datasets, are used to test the effectiveness of our adaptive planning approach. The computed plans both satisfy cumulative and per-session dose constraints while improving the objective (average tumor dose).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信