{"title":"极大广义标志的单变中的轨道对偶性","authors":"Lucas Fresse, I. Penkov","doi":"10.1090/MOSC/266","DOIUrl":null,"url":null,"abstract":"We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $\\mathbf{G}/\\mathbf{B}$ for a classical ind-group $\\mathbf{G}$ and a splitting Borel ind-subgroup $\\mathbf{B}\\subset\\mathbf{G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $K$- and $G^0$-orbits on $G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $\\mathbf{B}\\subset\\mathbf{G}$ for the existence of open and closed $\\mathbf{K}$- and $\\mathbf{G}^0$-orbits on $\\mathbf{G}/\\mathbf{B}$, where $\\left(\\mathbf{K},\\mathbf{G}^0\\right)$ is an aligned pair of a symmetric ind-subgroup $\\mathbf{K}$ and a real form $\\mathbf{G}^0$ of $\\mathbf{G}$.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"78 1","pages":"131-160"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/MOSC/266","citationCount":"2","resultStr":"{\"title\":\"Orbit duality in ind-varieties of maximal generalized flags\",\"authors\":\"Lucas Fresse, I. Penkov\",\"doi\":\"10.1090/MOSC/266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $\\\\mathbf{G}/\\\\mathbf{B}$ for a classical ind-group $\\\\mathbf{G}$ and a splitting Borel ind-subgroup $\\\\mathbf{B}\\\\subset\\\\mathbf{G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $K$- and $G^0$-orbits on $G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $\\\\mathbf{B}\\\\subset\\\\mathbf{G}$ for the existence of open and closed $\\\\mathbf{K}$- and $\\\\mathbf{G}^0$-orbits on $\\\\mathbf{G}/\\\\mathbf{B}$, where $\\\\left(\\\\mathbf{K},\\\\mathbf{G}^0\\\\right)$ is an aligned pair of a symmetric ind-subgroup $\\\\mathbf{K}$ and a real form $\\\\mathbf{G}^0$ of $\\\\mathbf{G}$.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"78 1\",\"pages\":\"131-160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/MOSC/266\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MOSC/266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MOSC/266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
摘要
我们将Matsuki对偶性扩展到极大广义标志的任意ini -变异,换句话说,对于一个经典ini -群$\mathbf{G}$和一个分裂Borel ini -子群$\mathbf{B}\子集$ mathbf{G}$,我们将Matsuki对偶性扩展到任意齐次ini -变异$\mathbf{G}/\mathbf{B}$。作为第一步,我们给出了有限维情况下Matsuki对偶的显式组合版本,涉及$K$-和$G^0$-轨道在$G/B$上的显式参数化。在证明了无限维情况下的Matsuki对偶性后,给出了Borel子群$\mathbf{B}\子集$ mathbf{G}$上$\mathbf{K}$-和$\mathbf{G}^0$-轨道存在的充分必要条件,其中$\左(\mathbf{K},\mathbf{G}^0\右)$ $是对称子群$\mathbf{K}$和$\mathbf{G}$的实数形式$\mathbf{G}^0$的一对对齐。
Orbit duality in ind-varieties of maximal generalized flags
We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $\mathbf{G}/\mathbf{B}$ for a classical ind-group $\mathbf{G}$ and a splitting Borel ind-subgroup $\mathbf{B}\subset\mathbf{G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $K$- and $G^0$-orbits on $G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $\mathbf{B}\subset\mathbf{G}$ for the existence of open and closed $\mathbf{K}$- and $\mathbf{G}^0$-orbits on $\mathbf{G}/\mathbf{B}$, where $\left(\mathbf{K},\mathbf{G}^0\right)$ is an aligned pair of a symmetric ind-subgroup $\mathbf{K}$ and a real form $\mathbf{G}^0$ of $\mathbf{G}$.