{"title":"-贝塞尔傅里叶积分的Dirichlet核和de la vall<s:1> - poussin - nikol ' skii核的构造","authors":"L. Lyakhov","doi":"10.1090/MOSC/242","DOIUrl":null,"url":null,"abstract":". We give elementary proofs of some properties of the generalized shift generated by a spherical symmetry. We construct B-kernels for Fourier integrals with respect to Bessel j-functions (Fourier–Bessel transforms). These are designed to play the same role as Dirichlet and de la Vall´ee-Poussin–Nikol’ski˘ı kernels in the theory of trigonometric Fourier integrals and in the theory of function approximation.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"76 1","pages":"55-69"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/MOSC/242","citationCount":"10","resultStr":"{\"title\":\"The construction of Dirichlet and de la Vallée-Poussin–Nikol’skiĭ kernels for -Bessel Fourier integrals\",\"authors\":\"L. Lyakhov\",\"doi\":\"10.1090/MOSC/242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give elementary proofs of some properties of the generalized shift generated by a spherical symmetry. We construct B-kernels for Fourier integrals with respect to Bessel j-functions (Fourier–Bessel transforms). These are designed to play the same role as Dirichlet and de la Vall´ee-Poussin–Nikol’ski˘ı kernels in the theory of trigonometric Fourier integrals and in the theory of function approximation.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\"76 1\",\"pages\":\"55-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/MOSC/242\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MOSC/242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MOSC/242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10
摘要
. 给出了由球对称产生的广义位移的一些性质的初等证明。我们构造关于贝塞尔j函数(傅里叶-贝塞尔变换)的傅里叶积分的b核。这些被设计成在三角傅立叶积分理论和函数逼近理论中扮演与Dirichlet和de la Vall ' ee-Poussin-Nikol 'ski × ×核相同的角色。
The construction of Dirichlet and de la Vallée-Poussin–Nikol’skiĭ kernels for -Bessel Fourier integrals
. We give elementary proofs of some properties of the generalized shift generated by a spherical symmetry. We construct B-kernels for Fourier integrals with respect to Bessel j-functions (Fourier–Bessel transforms). These are designed to play the same role as Dirichlet and de la Vall´ee-Poussin–Nikol’ski˘ı kernels in the theory of trigonometric Fourier integrals and in the theory of function approximation.