艾森巴德-戈托正则性猜想的反例

IF 3.5 1区 数学 Q1 MATHEMATICS
J. McCullough, I. Peeva
{"title":"艾森巴德-戈托正则性猜想的反例","authors":"J. McCullough, I. Peeva","doi":"10.1090/JAMS/891","DOIUrl":null,"url":null,"abstract":"Our main theorem shows that the regularity of non-degenerate homogeneous prime ideals is not bounded by any polynomial function of the degree; this holds over any field k. In particular, we provide counterexamples to the longstanding Regularity Conjecture, also known as the Eisenbud-Goto Conjecture (1984). We introduce a method which, starting from a homogeneous ideal I, produces a prime ideal whose projective dimension, regularity, degree, dimension, depth, and codimension are expressed in terms of numerical invariants of I. The method is also related to producing bounds in the spirit of Stillman’s Conjecture, recently solved by Ananyan-Hochster. Mathematics Department, Iowa State University, Ames, IA 50011, USA Mathematics Department, Cornell University, Ithaca, NY 14853, USA","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"65 1","pages":"473-496"},"PeriodicalIF":3.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/891","citationCount":"51","resultStr":"{\"title\":\"Counterexamples to the Eisenbud–Goto regularity conjecture\",\"authors\":\"J. McCullough, I. Peeva\",\"doi\":\"10.1090/JAMS/891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our main theorem shows that the regularity of non-degenerate homogeneous prime ideals is not bounded by any polynomial function of the degree; this holds over any field k. In particular, we provide counterexamples to the longstanding Regularity Conjecture, also known as the Eisenbud-Goto Conjecture (1984). We introduce a method which, starting from a homogeneous ideal I, produces a prime ideal whose projective dimension, regularity, degree, dimension, depth, and codimension are expressed in terms of numerical invariants of I. The method is also related to producing bounds in the spirit of Stillman’s Conjecture, recently solved by Ananyan-Hochster. Mathematics Department, Iowa State University, Ames, IA 50011, USA Mathematics Department, Cornell University, Ithaca, NY 14853, USA\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"65 1\",\"pages\":\"473-496\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAMS/891\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/891\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/891","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 51

摘要

我们的主要定理表明非退化齐次素数理想的正则性不受任何次多项式函数的约束;这适用于任何领域k。特别是,我们提供了长期存在的规律性猜想的反例,也被称为Eisenbud-Goto猜想(1984)。我们介绍了一种方法,它从齐次理想I开始,产生一个素理想,它的射影维数、正则性、度、维数、深度和余维数都是用I的数值不变量来表示的。这种方法也与最近由Ananyan-Hochster解决的Stillman猜想的精神产生界有关。爱荷华州立大学数学系,艾姆斯,纽约州50011,美国康奈尔大学数学系,伊萨卡,纽约州14853,美国
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterexamples to the Eisenbud–Goto regularity conjecture
Our main theorem shows that the regularity of non-degenerate homogeneous prime ideals is not bounded by any polynomial function of the degree; this holds over any field k. In particular, we provide counterexamples to the longstanding Regularity Conjecture, also known as the Eisenbud-Goto Conjecture (1984). We introduce a method which, starting from a homogeneous ideal I, produces a prime ideal whose projective dimension, regularity, degree, dimension, depth, and codimension are expressed in terms of numerical invariants of I. The method is also related to producing bounds in the spirit of Stillman’s Conjecture, recently solved by Ananyan-Hochster. Mathematics Department, Iowa State University, Ames, IA 50011, USA Mathematics Department, Cornell University, Ithaca, NY 14853, USA
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信