正则的超尖表示

IF 3.5 1区 数学 Q1 MATHEMATICS
Tasho Kaletha
{"title":"正则的超尖表示","authors":"Tasho Kaletha","doi":"10.1090/JAMS/925","DOIUrl":null,"url":null,"abstract":"We show that, in good residual characteristic, most supercuspidal representations of a tamely ramified reductive \n\n \n p\n p\n \n\n-adic group \n\n \n G\n G\n \n\n arise from pairs \n\n \n \n (\n S\n ,\n θ\n )\n \n (S,\\theta )\n \n\n, where \n\n \n S\n S\n \n\n is a tame elliptic maximal torus of \n\n \n G\n G\n \n\n, and \n\n \n θ\n \\theta\n \n\n is a character of \n\n \n S\n S\n \n\n satisfying a simple root-theoretic property. We then give a new expression for the roots of unity that appear in the Adler-DeBacker-Spice character formula for these supercuspidal representations and use it to show that this formula bears a striking resemblance to the character formula for discrete series representations of real reductive groups. Led by this, we explicitly construct the local Langlands correspondence for these supercuspidal representations and prove stability and endoscopic transfer in the case of toral representations. In large residual characteristic this gives a construction of the local Langlands correspondence for almost all supercuspidal representations of reductive \n\n \n p\n p\n \n\n-adic groups.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"42 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2016-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/925","citationCount":"56","resultStr":"{\"title\":\"Regular supercuspidal representations\",\"authors\":\"Tasho Kaletha\",\"doi\":\"10.1090/JAMS/925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that, in good residual characteristic, most supercuspidal representations of a tamely ramified reductive \\n\\n \\n p\\n p\\n \\n\\n-adic group \\n\\n \\n G\\n G\\n \\n\\n arise from pairs \\n\\n \\n \\n (\\n S\\n ,\\n θ\\n )\\n \\n (S,\\\\theta )\\n \\n\\n, where \\n\\n \\n S\\n S\\n \\n\\n is a tame elliptic maximal torus of \\n\\n \\n G\\n G\\n \\n\\n, and \\n\\n \\n θ\\n \\\\theta\\n \\n\\n is a character of \\n\\n \\n S\\n S\\n \\n\\n satisfying a simple root-theoretic property. We then give a new expression for the roots of unity that appear in the Adler-DeBacker-Spice character formula for these supercuspidal representations and use it to show that this formula bears a striking resemblance to the character formula for discrete series representations of real reductive groups. Led by this, we explicitly construct the local Langlands correspondence for these supercuspidal representations and prove stability and endoscopic transfer in the case of toral representations. In large residual characteristic this gives a construction of the local Langlands correspondence for almost all supercuspidal representations of reductive \\n\\n \\n p\\n p\\n \\n\\n-adic groups.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2016-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAMS/925\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/925\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/925","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 56

摘要

我们证明了在良好的残差特征下,一个正则化约p进群G G的大多数超尖表示是由(S, θ) (S,\theta)对产生的,其中S S是G G的正则椭圆极大环面,θ \theta是S S的一个满足简单根论性质的特征。然后,我们给出了这些超尖表示的Adler-DeBacker-Spice特征公式中出现的单位根的新表达式,并用它来证明该公式与实约化群的离散级数表示的特征公式具有惊人的相似之处。在此基础上,我们明确地构造了这些超尖表示的局部朗兰兹对应,并证明了这些超尖表示的稳定性和内窥镜迁移。在大残差特征下,给出了约化p进群的几乎所有超尖表示的局部朗兰兹对应的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular supercuspidal representations
We show that, in good residual characteristic, most supercuspidal representations of a tamely ramified reductive p p -adic group G G arise from pairs ( S , θ ) (S,\theta ) , where S S is a tame elliptic maximal torus of G G , and θ \theta is a character of S S satisfying a simple root-theoretic property. We then give a new expression for the roots of unity that appear in the Adler-DeBacker-Spice character formula for these supercuspidal representations and use it to show that this formula bears a striking resemblance to the character formula for discrete series representations of real reductive groups. Led by this, we explicitly construct the local Langlands correspondence for these supercuspidal representations and prove stability and endoscopic transfer in the case of toral representations. In large residual characteristic this gives a construction of the local Langlands correspondence for almost all supercuspidal representations of reductive p p -adic groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信