{"title":"代数参数的伯努利卷积的绝对连续性","authors":"P. P. Varj'u","doi":"10.1090/jams/916","DOIUrl":null,"url":null,"abstract":"<p>We prove that Bernoulli convolutions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript lamda\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mi>λ<!-- λ --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are absolutely continuous provided the parameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an algebraic number sufficiently close to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\n <mml:semantics>\n <mml:mn>1</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> depending on the Mahler measure of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2016-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/916","citationCount":"42","resultStr":"{\"title\":\"Absolute continuity of Bernoulli convolutions for algebraic parameters\",\"authors\":\"P. P. Varj'u\",\"doi\":\"10.1090/jams/916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that Bernoulli convolutions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu Subscript lamda\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu _\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are absolutely continuous provided the parameter <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is an algebraic number sufficiently close to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\">\\n <mml:semantics>\\n <mml:mn>1</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> depending on the Mahler measure of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda\\\">\\n <mml:semantics>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2016-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/916\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/916\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/916","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Absolute continuity of Bernoulli convolutions for algebraic parameters
We prove that Bernoulli convolutions μλ\mu _\lambda are absolutely continuous provided the parameter λ\lambda is an algebraic number sufficiently close to 11 depending on the Mahler measure of λ\lambda.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.