台湾入境航空旅客季节ARIMA预测

Ching-Fu Chen, Yu-Hern Chang, Y. Chang
{"title":"台湾入境航空旅客季节ARIMA预测","authors":"Ching-Fu Chen, Yu-Hern Chang, Y. Chang","doi":"10.1080/18128600802591210","DOIUrl":null,"url":null,"abstract":"This article uses the Holt–Winters method, the seasonal ARIMA (SARIMA) model, and the GM(1,1) grey forecasting model to replicate monthly inbound air travel arrivals to Taiwan and to compare the models’ forecasting performance. It uses the mean absolute percent error (MAPE) for the measurement of forecast accuracy and implements turning point analysis (TPA) to compare the model performance between the direct and indirect forecast methods. Based on the out-of-sample forecasts, all fitted models have good forecasting performance in terms of the MAPE criterion, and the SARIMA model is the best one for forecasting inbound air travel arrivals to Taiwan. According to the TPA results, this article supports the out-performance of the indirect forecast method.","PeriodicalId":49416,"journal":{"name":"Transportmetrica","volume":"5 1","pages":"125 - 140"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/18128600802591210","citationCount":"72","resultStr":"{\"title\":\"Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan\",\"authors\":\"Ching-Fu Chen, Yu-Hern Chang, Y. Chang\",\"doi\":\"10.1080/18128600802591210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article uses the Holt–Winters method, the seasonal ARIMA (SARIMA) model, and the GM(1,1) grey forecasting model to replicate monthly inbound air travel arrivals to Taiwan and to compare the models’ forecasting performance. It uses the mean absolute percent error (MAPE) for the measurement of forecast accuracy and implements turning point analysis (TPA) to compare the model performance between the direct and indirect forecast methods. Based on the out-of-sample forecasts, all fitted models have good forecasting performance in terms of the MAPE criterion, and the SARIMA model is the best one for forecasting inbound air travel arrivals to Taiwan. According to the TPA results, this article supports the out-performance of the indirect forecast method.\",\"PeriodicalId\":49416,\"journal\":{\"name\":\"Transportmetrica\",\"volume\":\"5 1\",\"pages\":\"125 - 140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/18128600802591210\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/18128600802591210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18128600802591210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

本文采用Holt-Winters方法、季节性ARIMA (SARIMA)模型和GM(1,1)灰色预测模型来模拟台湾每月入境航空旅游人次,并比较模型的预测效果。采用平均绝对误差百分比(MAPE)来衡量预测精度,并采用拐点分析(TPA)来比较直接和间接预测方法的模型性能。基于样本外预测,所有拟合模型在MAPE准则下均有较好的预测效果,其中SARIMA模型对台湾入境航空客流量的预测效果最好。根据TPA的结果,本文支持间接预测方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan
This article uses the Holt–Winters method, the seasonal ARIMA (SARIMA) model, and the GM(1,1) grey forecasting model to replicate monthly inbound air travel arrivals to Taiwan and to compare the models’ forecasting performance. It uses the mean absolute percent error (MAPE) for the measurement of forecast accuracy and implements turning point analysis (TPA) to compare the model performance between the direct and indirect forecast methods. Based on the out-of-sample forecasts, all fitted models have good forecasting performance in terms of the MAPE criterion, and the SARIMA model is the best one for forecasting inbound air travel arrivals to Taiwan. According to the TPA results, this article supports the out-performance of the indirect forecast method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportmetrica
Transportmetrica 工程技术-运输科技
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信