{"title":"综述:手性液晶中的Hopfions、heliknoton、skyrmions、torons以及阿贝尔和非阿贝尔涡旋","authors":"Jingyan Wu, I. Smalyukh","doi":"10.1080/21680396.2022.2040058","DOIUrl":null,"url":null,"abstract":"Widely known for their uses in displays and electro-optics, liquid crystals are more than just technological marvels. They vividly reveal the topology and structure of various solitonic and singular field configurations, often markedly resembling the ones arising in many field theories and in the areas ranging from particle physics to optics, hard condensed matter and cosmology. In this review, we focus on chiral nematic liquid crystals to show how these experimentally highly accessible systems provide valuable insights into the structure and behavior of fractional, full, and multi-integer two-dimensional skyrmions, dislocations and both abelian and non-abelian defect lines, as well as various three-dimensionally localized, often knotted structures that include hopfions, heliknotons, torons and twistions. We provide comparisons of some of these field configurations with their topological counterparts in chiral magnets, discussing close analogies between these two condensed matter systems.","PeriodicalId":18087,"journal":{"name":"Liquid Crystals Reviews","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Review: Hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals\",\"authors\":\"Jingyan Wu, I. Smalyukh\",\"doi\":\"10.1080/21680396.2022.2040058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Widely known for their uses in displays and electro-optics, liquid crystals are more than just technological marvels. They vividly reveal the topology and structure of various solitonic and singular field configurations, often markedly resembling the ones arising in many field theories and in the areas ranging from particle physics to optics, hard condensed matter and cosmology. In this review, we focus on chiral nematic liquid crystals to show how these experimentally highly accessible systems provide valuable insights into the structure and behavior of fractional, full, and multi-integer two-dimensional skyrmions, dislocations and both abelian and non-abelian defect lines, as well as various three-dimensionally localized, often knotted structures that include hopfions, heliknotons, torons and twistions. We provide comparisons of some of these field configurations with their topological counterparts in chiral magnets, discussing close analogies between these two condensed matter systems.\",\"PeriodicalId\":18087,\"journal\":{\"name\":\"Liquid Crystals Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid Crystals Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21680396.2022.2040058\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21680396.2022.2040058","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Review: Hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals
Widely known for their uses in displays and electro-optics, liquid crystals are more than just technological marvels. They vividly reveal the topology and structure of various solitonic and singular field configurations, often markedly resembling the ones arising in many field theories and in the areas ranging from particle physics to optics, hard condensed matter and cosmology. In this review, we focus on chiral nematic liquid crystals to show how these experimentally highly accessible systems provide valuable insights into the structure and behavior of fractional, full, and multi-integer two-dimensional skyrmions, dislocations and both abelian and non-abelian defect lines, as well as various three-dimensionally localized, often knotted structures that include hopfions, heliknotons, torons and twistions. We provide comparisons of some of these field configurations with their topological counterparts in chiral magnets, discussing close analogies between these two condensed matter systems.
期刊介绍:
Liquid Crystals Reviews publishes review articles on all aspects of liquid crystal fundamentals and applied science, including experimental and theoretical studies of physical and chemical properties, molecular design and synthesis and engineering of liquid crystal devices. The Journal fosters cross-disciplinary exchange of ideas, encouraging authors to present material at a level accessible to specialists from other fields of science and engineering. Liquid Crystals Reviews provides the scientific community, in both academia and industry, with a publication of standing, guaranteed by the Editors and by the International Editorial Board who are active scientists in the worldwide liquid crystal community.