{"title":"从液晶各向同性相的流动双折射到液体剪切弹性的识别","authors":"P. Kahl, L. Noirez","doi":"10.1080/21680396.2016.1271367","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recent experimental developments show that without reticulation links or entanglements, the isotropic phase of liquid crystals can work mechanically as an elastomer and optically as a harmonic oscillator at the sub-millimetre scale. The strength of the elastic response depends on the molecular architecture and is enhanced when the liquid-crystal molecules are attached as side-chain moieties to a chain backbone. This elastomeric behaviour of the isotropic phase is evidenced via stress and optical responses to a low-frequency mechanical excitation. Visible far away from any phase transition, this spectacular effect contains important information: the liquid state is a low threshold elastic medium; molecules are dynamically correlated and this elastic correlation is observed up to the sub-millimetre scale. This discovery sheds a new light on the origin of well-known effects as flow birefringence, shear banding in complex fluids or flow instabilities in simple liquids. The present paper emphasizes the key role of long range elastic interactions for a comprehensive approach to the flow birefringence, from its origins and to new possible applications.","PeriodicalId":18087,"journal":{"name":"Liquid Crystals Reviews","volume":"4 1","pages":"135 - 151"},"PeriodicalIF":4.8000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21680396.2016.1271367","citationCount":"8","resultStr":"{\"title\":\"From flow birefringence in the isotropic phase of liquid crystals to the identification of shear elasticity in liquids\",\"authors\":\"P. Kahl, L. Noirez\",\"doi\":\"10.1080/21680396.2016.1271367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Recent experimental developments show that without reticulation links or entanglements, the isotropic phase of liquid crystals can work mechanically as an elastomer and optically as a harmonic oscillator at the sub-millimetre scale. The strength of the elastic response depends on the molecular architecture and is enhanced when the liquid-crystal molecules are attached as side-chain moieties to a chain backbone. This elastomeric behaviour of the isotropic phase is evidenced via stress and optical responses to a low-frequency mechanical excitation. Visible far away from any phase transition, this spectacular effect contains important information: the liquid state is a low threshold elastic medium; molecules are dynamically correlated and this elastic correlation is observed up to the sub-millimetre scale. This discovery sheds a new light on the origin of well-known effects as flow birefringence, shear banding in complex fluids or flow instabilities in simple liquids. The present paper emphasizes the key role of long range elastic interactions for a comprehensive approach to the flow birefringence, from its origins and to new possible applications.\",\"PeriodicalId\":18087,\"journal\":{\"name\":\"Liquid Crystals Reviews\",\"volume\":\"4 1\",\"pages\":\"135 - 151\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2016-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21680396.2016.1271367\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid Crystals Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21680396.2016.1271367\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21680396.2016.1271367","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
From flow birefringence in the isotropic phase of liquid crystals to the identification of shear elasticity in liquids
ABSTRACT Recent experimental developments show that without reticulation links or entanglements, the isotropic phase of liquid crystals can work mechanically as an elastomer and optically as a harmonic oscillator at the sub-millimetre scale. The strength of the elastic response depends on the molecular architecture and is enhanced when the liquid-crystal molecules are attached as side-chain moieties to a chain backbone. This elastomeric behaviour of the isotropic phase is evidenced via stress and optical responses to a low-frequency mechanical excitation. Visible far away from any phase transition, this spectacular effect contains important information: the liquid state is a low threshold elastic medium; molecules are dynamically correlated and this elastic correlation is observed up to the sub-millimetre scale. This discovery sheds a new light on the origin of well-known effects as flow birefringence, shear banding in complex fluids or flow instabilities in simple liquids. The present paper emphasizes the key role of long range elastic interactions for a comprehensive approach to the flow birefringence, from its origins and to new possible applications.
期刊介绍:
Liquid Crystals Reviews publishes review articles on all aspects of liquid crystal fundamentals and applied science, including experimental and theoretical studies of physical and chemical properties, molecular design and synthesis and engineering of liquid crystal devices. The Journal fosters cross-disciplinary exchange of ideas, encouraging authors to present material at a level accessible to specialists from other fields of science and engineering. Liquid Crystals Reviews provides the scientific community, in both academia and industry, with a publication of standing, guaranteed by the Editors and by the International Editorial Board who are active scientists in the worldwide liquid crystal community.