{"title":"倾听你的肠道:利用粘连来塑造功能多样的上皮细胞表面","authors":"M. Tyska","doi":"10.1080/21675511.2016.1220469","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cell surface protrusions play central roles in the physiological function of a number of organ systems. Recent discoveries suggest that polarized cells in functionally diverse epithelia employ conserved cadherin-based adhesion complexes to shape, stabilize, and organize actin-based protrusions during differentiation. Below we discuss the implications of these findings for understanding human biology and disease, and highlight promising directions for future studies on this conserved mechanism for shaping the cell surface.","PeriodicalId":74639,"journal":{"name":"Rare diseases (Austin, Tex.)","volume":"4 1","pages":"200"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21675511.2016.1220469","citationCount":"0","resultStr":"{\"title\":\"Listen to your gut: Using adhesion to shape the surface of functionally diverse epithelia\",\"authors\":\"M. Tyska\",\"doi\":\"10.1080/21675511.2016.1220469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Cell surface protrusions play central roles in the physiological function of a number of organ systems. Recent discoveries suggest that polarized cells in functionally diverse epithelia employ conserved cadherin-based adhesion complexes to shape, stabilize, and organize actin-based protrusions during differentiation. Below we discuss the implications of these findings for understanding human biology and disease, and highlight promising directions for future studies on this conserved mechanism for shaping the cell surface.\",\"PeriodicalId\":74639,\"journal\":{\"name\":\"Rare diseases (Austin, Tex.)\",\"volume\":\"4 1\",\"pages\":\"200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21675511.2016.1220469\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare diseases (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21675511.2016.1220469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare diseases (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21675511.2016.1220469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Listen to your gut: Using adhesion to shape the surface of functionally diverse epithelia
ABSTRACT Cell surface protrusions play central roles in the physiological function of a number of organ systems. Recent discoveries suggest that polarized cells in functionally diverse epithelia employ conserved cadherin-based adhesion complexes to shape, stabilize, and organize actin-based protrusions during differentiation. Below we discuss the implications of these findings for understanding human biology and disease, and highlight promising directions for future studies on this conserved mechanism for shaping the cell surface.