{"title":"镍基二、三元合金中APB能量的第一性原理计算","authors":"M. Chandran, S. Sondhi","doi":"10.1088/0965-0393/19/2/025008","DOIUrl":null,"url":null,"abstract":"An ab initio method based on density functional theory has been employed to compute the zero-temperature anti-phase boundary (APB) energies for Ni3Al1−xRx (R = Nb, Ta, Ti) system over a range of compositions. The computation is limited to the APB on the (1 1 1) plane for L12 crystal structure, allowing only the volume relaxation, appropriate for the γ′ precipitate in Ni-based superalloy. For the limiting case of the binary system Ni3Al, the APB energy has also been calculated for the (1 0 0) plane. We find that the APB energy for the (1 1 1) plane in Ni3Al is 181 mJ m−2, and substitution of Nb, Ta or Ti at the Al site increases the APB energy to over 600 mJ m−2, leading to higher strengths. While the peak APB energy values for all the ternary systems are quite similar, they are achieved over very different compositional ranges. Nb and Ta are found to have almost identical strengthening effect on Ni3Al. The selected compositional space is of direct relevance to the commercially important family of Ni-based superalloys, and our results provide important guidelines for alloy design strategies.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"19 1","pages":"025008"},"PeriodicalIF":1.9000,"publicationDate":"2011-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/0965-0393/19/2/025008","citationCount":"70","resultStr":"{\"title\":\"First-principle calculation of APB energy in Ni-based binary and ternary alloys\",\"authors\":\"M. Chandran, S. Sondhi\",\"doi\":\"10.1088/0965-0393/19/2/025008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ab initio method based on density functional theory has been employed to compute the zero-temperature anti-phase boundary (APB) energies for Ni3Al1−xRx (R = Nb, Ta, Ti) system over a range of compositions. The computation is limited to the APB on the (1 1 1) plane for L12 crystal structure, allowing only the volume relaxation, appropriate for the γ′ precipitate in Ni-based superalloy. For the limiting case of the binary system Ni3Al, the APB energy has also been calculated for the (1 0 0) plane. We find that the APB energy for the (1 1 1) plane in Ni3Al is 181 mJ m−2, and substitution of Nb, Ta or Ti at the Al site increases the APB energy to over 600 mJ m−2, leading to higher strengths. While the peak APB energy values for all the ternary systems are quite similar, they are achieved over very different compositional ranges. Nb and Ta are found to have almost identical strengthening effect on Ni3Al. The selected compositional space is of direct relevance to the commercially important family of Ni-based superalloys, and our results provide important guidelines for alloy design strategies.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"19 1\",\"pages\":\"025008\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2011-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/0965-0393/19/2/025008\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/0965-0393/19/2/025008\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/0965-0393/19/2/025008","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
First-principle calculation of APB energy in Ni-based binary and ternary alloys
An ab initio method based on density functional theory has been employed to compute the zero-temperature anti-phase boundary (APB) energies for Ni3Al1−xRx (R = Nb, Ta, Ti) system over a range of compositions. The computation is limited to the APB on the (1 1 1) plane for L12 crystal structure, allowing only the volume relaxation, appropriate for the γ′ precipitate in Ni-based superalloy. For the limiting case of the binary system Ni3Al, the APB energy has also been calculated for the (1 0 0) plane. We find that the APB energy for the (1 1 1) plane in Ni3Al is 181 mJ m−2, and substitution of Nb, Ta or Ti at the Al site increases the APB energy to over 600 mJ m−2, leading to higher strengths. While the peak APB energy values for all the ternary systems are quite similar, they are achieved over very different compositional ranges. Nb and Ta are found to have almost identical strengthening effect on Ni3Al. The selected compositional space is of direct relevance to the commercially important family of Ni-based superalloys, and our results provide important guidelines for alloy design strategies.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.