具有两个时滞的Seir流行病模型

IF 0.4 Q4 MATHEMATICS
T. Waezizadeh
{"title":"具有两个时滞的Seir流行病模型","authors":"T. Waezizadeh","doi":"10.1080/1726037X.2016.1250503","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we introduce the SEIR epidemic model with latent and infectious time delays, which are denoted by ω and τ respectively. As follows we consider two different cases, ω = 0 and ω ≠ 0 ≠ τ. Stability near disease-free and endemic equilibrium points in different cases are investigated.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"14 1","pages":"189 - 200"},"PeriodicalIF":0.4000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2016.1250503","citationCount":"2","resultStr":"{\"title\":\"Seir epidemic model with two time delays\",\"authors\":\"T. Waezizadeh\",\"doi\":\"10.1080/1726037X.2016.1250503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we introduce the SEIR epidemic model with latent and infectious time delays, which are denoted by ω and τ respectively. As follows we consider two different cases, ω = 0 and ω ≠ 0 ≠ τ. Stability near disease-free and endemic equilibrium points in different cases are investigated.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"14 1\",\"pages\":\"189 - 200\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2016-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2016.1250503\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2016.1250503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2016.1250503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文引入了具有潜伏和传染时滞的SEIR流行病模型,分别用ω和τ表示。下面我们考虑两种不同的情况,ω = 0和ω≠0≠τ。研究了不同情况下无病平衡点和地方病平衡点附近的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seir epidemic model with two time delays
Abstract In this paper we introduce the SEIR epidemic model with latent and infectious time delays, which are denoted by ω and τ respectively. As follows we consider two different cases, ω = 0 and ω ≠ 0 ≠ τ. Stability near disease-free and endemic equilibrium points in different cases are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信