膜运输中的二酰基甘油激酶

Shuwei Xie, Naava Naslavsky, S. Caplan
{"title":"膜运输中的二酰基甘油激酶","authors":"Shuwei Xie, Naava Naslavsky, S. Caplan","doi":"10.1080/21592799.2015.1078431","DOIUrl":null,"url":null,"abstract":"Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years.","PeriodicalId":72547,"journal":{"name":"Cellular logistics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21592799.2015.1078431","citationCount":"22","resultStr":"{\"title\":\"Diacylglycerol kinases in membrane trafficking\",\"authors\":\"Shuwei Xie, Naava Naslavsky, S. Caplan\",\"doi\":\"10.1080/21592799.2015.1078431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years.\",\"PeriodicalId\":72547,\"journal\":{\"name\":\"Cellular logistics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21592799.2015.1078431\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21592799.2015.1078431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21592799.2015.1078431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

二酰基甘油激酶(DGKs)属于胞质激酶家族,调节二酰基甘油(DAG)的磷酸化,将其转化为磷脂酸(PA)。有10种已知的哺乳动物DGK亚型,每一种都有不同的组织分布和底物特异性。这些差异允许通过微调细胞DAG和PA的微妙平衡来调节细胞反应。DGK异构体是信号转导和免疫功能的介质。然而,由于最近的研究表明DAG和PA也参与了内吞运输的调节,因此可以预期DGKs在膜运输中也起着重要作用。在这篇综述中,我们总结了讨论DGK亚型在内吞运输的不同阶段的作用的文献,包括内吞作用、胞外作用、内吞循环和从/到高尔基体的运输。总的来说,这些研究有助于我们理解PA和DAG参与内吞贩运,这是近年来引起越来越多关注的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diacylglycerol kinases in membrane trafficking
Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信