{"title":"个性化心脏模拟的时空建模与优化","authors":"B. Yao","doi":"10.1080/24725579.2021.1879322","DOIUrl":null,"url":null,"abstract":"Abstract Computational modeling of the heart has contributed tremendously in quantitatively understanding the cardiac functions, showing great potential to assist medical doctors in heart-disease diagnosis. However, cardiac simulation is generally subject to uncertainties and variabilities among different individuals. Traditional “one-size-fits-all” simulation is limited in providing individualized optimal diagnosis and treatment for patients with heart disease. Realizing the full potential of cardiac computational modeling in clinical practice requires effective and efficient model personalization. In this paper, we develop a spatiotemporal modeling and optimization framework for cardiac model calibration. The proposed calibration framework not only effectively quantifies the spatiotemporal discrepancy between the simulation model and the physical cardiac system, but also increases the computational efficiency in personalized modeling of cardiac electrophysiology. The model performance is validated and evaluated in the 3D cardiac simulation. Numerical experiments demonstrate that the proposed framework significantly outperforms traditional approaches in calibrating the cardiac simulation.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"11 1","pages":"145 - 160"},"PeriodicalIF":1.5000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24725579.2021.1879322","citationCount":"5","resultStr":"{\"title\":\"Spatiotemporal modeling and optimization for personalized cardiac simulation\",\"authors\":\"B. Yao\",\"doi\":\"10.1080/24725579.2021.1879322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Computational modeling of the heart has contributed tremendously in quantitatively understanding the cardiac functions, showing great potential to assist medical doctors in heart-disease diagnosis. However, cardiac simulation is generally subject to uncertainties and variabilities among different individuals. Traditional “one-size-fits-all” simulation is limited in providing individualized optimal diagnosis and treatment for patients with heart disease. Realizing the full potential of cardiac computational modeling in clinical practice requires effective and efficient model personalization. In this paper, we develop a spatiotemporal modeling and optimization framework for cardiac model calibration. The proposed calibration framework not only effectively quantifies the spatiotemporal discrepancy between the simulation model and the physical cardiac system, but also increases the computational efficiency in personalized modeling of cardiac electrophysiology. The model performance is validated and evaluated in the 3D cardiac simulation. Numerical experiments demonstrate that the proposed framework significantly outperforms traditional approaches in calibrating the cardiac simulation.\",\"PeriodicalId\":37744,\"journal\":{\"name\":\"IISE Transactions on Healthcare Systems Engineering\",\"volume\":\"11 1\",\"pages\":\"145 - 160\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24725579.2021.1879322\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IISE Transactions on Healthcare Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24725579.2021.1879322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2021.1879322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Spatiotemporal modeling and optimization for personalized cardiac simulation
Abstract Computational modeling of the heart has contributed tremendously in quantitatively understanding the cardiac functions, showing great potential to assist medical doctors in heart-disease diagnosis. However, cardiac simulation is generally subject to uncertainties and variabilities among different individuals. Traditional “one-size-fits-all” simulation is limited in providing individualized optimal diagnosis and treatment for patients with heart disease. Realizing the full potential of cardiac computational modeling in clinical practice requires effective and efficient model personalization. In this paper, we develop a spatiotemporal modeling and optimization framework for cardiac model calibration. The proposed calibration framework not only effectively quantifies the spatiotemporal discrepancy between the simulation model and the physical cardiac system, but also increases the computational efficiency in personalized modeling of cardiac electrophysiology. The model performance is validated and evaluated in the 3D cardiac simulation. Numerical experiments demonstrate that the proposed framework significantly outperforms traditional approaches in calibrating the cardiac simulation.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.