{"title":"抓握任务有限元模拟的第一步","authors":"D. Chamoret, M. Bodo, S. Roth","doi":"10.1080/24699322.2016.1240294","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates a biomechanical aspect of human hand during grasping, using the finite-element method. A realistic three-dimensional finite–element (FE) model of a human hand is developed, including wrist bones, phalanges, soft tissues and skin, reconstructed from medical computed tomography (CT) scan images. Material laws of the literature have been implemented in the model, in order to be able to simulate a simple activity of grasping. In a human design context, this model allows an interesting biomechanical study, which simulates the grasping task in a biofidelic manner. This model is a first step in the modeling of the human hand that can lead to future studies dealing with the interaction of the hand with its environment for the improvement of safety requirements of future products development.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"21 1","pages":"22 - 29"},"PeriodicalIF":1.9000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2016.1240294","citationCount":"16","resultStr":"{\"title\":\"A first step in finite-element simulation of a grasping task\",\"authors\":\"D. Chamoret, M. Bodo, S. Roth\",\"doi\":\"10.1080/24699322.2016.1240294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper investigates a biomechanical aspect of human hand during grasping, using the finite-element method. A realistic three-dimensional finite–element (FE) model of a human hand is developed, including wrist bones, phalanges, soft tissues and skin, reconstructed from medical computed tomography (CT) scan images. Material laws of the literature have been implemented in the model, in order to be able to simulate a simple activity of grasping. In a human design context, this model allows an interesting biomechanical study, which simulates the grasping task in a biofidelic manner. This model is a first step in the modeling of the human hand that can lead to future studies dealing with the interaction of the hand with its environment for the improvement of safety requirements of future products development.\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":\"21 1\",\"pages\":\"22 - 29\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24699322.2016.1240294\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2016.1240294\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2016.1240294","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
A first step in finite-element simulation of a grasping task
Abstract This paper investigates a biomechanical aspect of human hand during grasping, using the finite-element method. A realistic three-dimensional finite–element (FE) model of a human hand is developed, including wrist bones, phalanges, soft tissues and skin, reconstructed from medical computed tomography (CT) scan images. Material laws of the literature have been implemented in the model, in order to be able to simulate a simple activity of grasping. In a human design context, this model allows an interesting biomechanical study, which simulates the grasping task in a biofidelic manner. This model is a first step in the modeling of the human hand that can lead to future studies dealing with the interaction of the hand with its environment for the improvement of safety requirements of future products development.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.