关联函数对后向分岔存在性的影响

Q3 Mathematics
David J. Gerberry, A. M. Philip
{"title":"关联函数对后向分岔存在性的影响","authors":"David J. Gerberry, A. M. Philip","doi":"10.1080/23737867.2016.1217757","DOIUrl":null,"url":null,"abstract":"In modelling, the dynamics of infectious disease, the choice of the specific mathematical formulation of disease transmission (i.e. the incidence function) is one of the initial assumptions to be made. While inconsequential in many situations, we show that the incidence function can have an effect on the existence of backward bifurcation (the phenomenon where a disease can persist even when the basic reproductive number is less than 1). More specifically, we compare mass action (MA) and standard incidence (SI) (the most common incidence functions) versions of two hallmark models in the backward bifurcation literature and an original combination model. Our findings indicate that the SI formation of disease transmission is more conducive to backward bifurcation than MA, a trend seen in all the models analysed.","PeriodicalId":37222,"journal":{"name":"Letters in Biomathematics","volume":"3 1","pages":"181 - 199"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23737867.2016.1217757","citationCount":"3","resultStr":"{\"title\":\"The effect of the incidence function on the existence of backward bifurcation\",\"authors\":\"David J. Gerberry, A. M. Philip\",\"doi\":\"10.1080/23737867.2016.1217757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modelling, the dynamics of infectious disease, the choice of the specific mathematical formulation of disease transmission (i.e. the incidence function) is one of the initial assumptions to be made. While inconsequential in many situations, we show that the incidence function can have an effect on the existence of backward bifurcation (the phenomenon where a disease can persist even when the basic reproductive number is less than 1). More specifically, we compare mass action (MA) and standard incidence (SI) (the most common incidence functions) versions of two hallmark models in the backward bifurcation literature and an original combination model. Our findings indicate that the SI formation of disease transmission is more conducive to backward bifurcation than MA, a trend seen in all the models analysed.\",\"PeriodicalId\":37222,\"journal\":{\"name\":\"Letters in Biomathematics\",\"volume\":\"3 1\",\"pages\":\"181 - 199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23737867.2016.1217757\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Biomathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737867.2016.1217757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737867.2016.1217757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

在传染病动力学建模中,疾病传播的具体数学公式(即发病率函数)的选择是要做的初始假设之一。虽然在许多情况下无关紧要,但我们表明,发病率函数可以对后向分岔的存在产生影响(即使基本繁殖数小于1,疾病也可以持续存在的现象)。更具体地说,我们比较了后向分岔文献和原始组合模型中两个标志模型的质量作用(MA)和标准发病率(SI)(最常见的发病率函数)版本。我们的研究结果表明,疾病传播的SI形成比MA更有利于后向分叉,这一趋势在所有分析的模型中都可以看到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of the incidence function on the existence of backward bifurcation
In modelling, the dynamics of infectious disease, the choice of the specific mathematical formulation of disease transmission (i.e. the incidence function) is one of the initial assumptions to be made. While inconsequential in many situations, we show that the incidence function can have an effect on the existence of backward bifurcation (the phenomenon where a disease can persist even when the basic reproductive number is less than 1). More specifically, we compare mass action (MA) and standard incidence (SI) (the most common incidence functions) versions of two hallmark models in the backward bifurcation literature and an original combination model. Our findings indicate that the SI formation of disease transmission is more conducive to backward bifurcation than MA, a trend seen in all the models analysed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Biomathematics
Letters in Biomathematics Mathematics-Statistics and Probability
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信