高光谱数据预测土壤性质的预处理技术综述

S. Minu, Amba Shetty, Binny Gopal
{"title":"高光谱数据预测土壤性质的预处理技术综述","authors":"S. Minu, Amba Shetty, Binny Gopal","doi":"10.1080/23312041.2016.1145878","DOIUrl":null,"url":null,"abstract":"Abstract Soil properties are neither static nor homogenous with space and time. Capturing the spatial variation of soil properties through conventional methods is a difficult task. Hyperspectral remote sensing data provide rich source of information produced in the form of spectrum at each pixel which can be used to identify surface materials. Airborne and spaceborne narrowband hyperspectral sensors have come to the fore which provides spectral information across large area. Thus, it is a promising tool for studying soil properties and can be used as an alternative to conventional method. But atmospheric attenuation and low signal to noise ratio are major problems with this type of data. Preprocessing of hyperspectral airborne/spaceborne data is required to extract soil properties. This paper reviews previous studies on prediction of soil properties from hyperspectral airborne and satellite data during the past years and the preprocessing techniques used in these predictions.","PeriodicalId":42883,"journal":{"name":"Cogent Geoscience","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23312041.2016.1145878","citationCount":"15","resultStr":"{\"title\":\"Review of preprocessing techniques used in soil property prediction from hyperspectral data\",\"authors\":\"S. Minu, Amba Shetty, Binny Gopal\",\"doi\":\"10.1080/23312041.2016.1145878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Soil properties are neither static nor homogenous with space and time. Capturing the spatial variation of soil properties through conventional methods is a difficult task. Hyperspectral remote sensing data provide rich source of information produced in the form of spectrum at each pixel which can be used to identify surface materials. Airborne and spaceborne narrowband hyperspectral sensors have come to the fore which provides spectral information across large area. Thus, it is a promising tool for studying soil properties and can be used as an alternative to conventional method. But atmospheric attenuation and low signal to noise ratio are major problems with this type of data. Preprocessing of hyperspectral airborne/spaceborne data is required to extract soil properties. This paper reviews previous studies on prediction of soil properties from hyperspectral airborne and satellite data during the past years and the preprocessing techniques used in these predictions.\",\"PeriodicalId\":42883,\"journal\":{\"name\":\"Cogent Geoscience\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23312041.2016.1145878\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23312041.2016.1145878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23312041.2016.1145878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

土壤的性质既不是静态的,也不是随时间和空间均质的。通过传统方法捕捉土壤性质的空间变化是一项艰巨的任务。高光谱遥感数据以每个像元的光谱形式提供了丰富的信息来源,可用于识别地表物质。机载和星载窄带高光谱传感器已经崭露头角,可以提供大范围的光谱信息。因此,它是一种很有前途的研究土壤性质的工具,可以作为传统方法的替代方法。但大气衰减和低信噪比是这类数据的主要问题。为了提取土壤特性,需要对高光谱航空/星载数据进行预处理。本文综述了近年来利用航空和卫星高光谱数据预测土壤性质的研究进展,以及预测中使用的预处理技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of preprocessing techniques used in soil property prediction from hyperspectral data
Abstract Soil properties are neither static nor homogenous with space and time. Capturing the spatial variation of soil properties through conventional methods is a difficult task. Hyperspectral remote sensing data provide rich source of information produced in the form of spectrum at each pixel which can be used to identify surface materials. Airborne and spaceborne narrowband hyperspectral sensors have come to the fore which provides spectral information across large area. Thus, it is a promising tool for studying soil properties and can be used as an alternative to conventional method. But atmospheric attenuation and low signal to noise ratio are major problems with this type of data. Preprocessing of hyperspectral airborne/spaceborne data is required to extract soil properties. This paper reviews previous studies on prediction of soil properties from hyperspectral airborne and satellite data during the past years and the preprocessing techniques used in these predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Geoscience
Cogent Geoscience GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信