E. Chandra Sekhar, K. K. Krishna Rao, K. Madhusudana Rao, S. Pradeep Kumar
{"title":"以酸柠檬为原料合成可控银纳米结构灭活致病菌的绿色途径","authors":"E. Chandra Sekhar, K. K. Krishna Rao, K. Madhusudana Rao, S. Pradeep Kumar","doi":"10.1080/23312009.2016.1144296","DOIUrl":null,"url":null,"abstract":"Abstract Controllable silver nanoparticles were developed by a green approach using extracts of both leaves and bark of Limonia acidissima tree. Due to the presence of phytochemical compounds in L. acidissima leaves and bark; such as saponins, phenolic compounds, phytosterols, and quinines present in extracts act as reductants, hence the silver nanoparticles were easily produced under mild conditions. The formation and kinetic study of silver nanoparticles were verified by UV–vis spectroscopy. Highly stable and uniform size silver nanoparticles were produced using bark extract reduction than leaf extract and confirmed by dynamic light scattering and transmission electron microscopy analysis. Further we applied antibacterial activity on both Escherichia coli and Bacillus subtilis. The results suggest that the silver nanoparticles suspension exhibits excellent antibacterial activity. The present study is a simple and eco-friendly approach for production of silver nanoparticles in the large scale up and could be easily commercialized, especially biological applications.","PeriodicalId":10640,"journal":{"name":"Cogent Chemistry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23312009.2016.1144296","citationCount":"16","resultStr":"{\"title\":\"A green approach to synthesize controllable silver nanostructures from Limonia acidissima for inactivation of pathogenic bacteria\",\"authors\":\"E. Chandra Sekhar, K. K. Krishna Rao, K. Madhusudana Rao, S. Pradeep Kumar\",\"doi\":\"10.1080/23312009.2016.1144296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Controllable silver nanoparticles were developed by a green approach using extracts of both leaves and bark of Limonia acidissima tree. Due to the presence of phytochemical compounds in L. acidissima leaves and bark; such as saponins, phenolic compounds, phytosterols, and quinines present in extracts act as reductants, hence the silver nanoparticles were easily produced under mild conditions. The formation and kinetic study of silver nanoparticles were verified by UV–vis spectroscopy. Highly stable and uniform size silver nanoparticles were produced using bark extract reduction than leaf extract and confirmed by dynamic light scattering and transmission electron microscopy analysis. Further we applied antibacterial activity on both Escherichia coli and Bacillus subtilis. The results suggest that the silver nanoparticles suspension exhibits excellent antibacterial activity. The present study is a simple and eco-friendly approach for production of silver nanoparticles in the large scale up and could be easily commercialized, especially biological applications.\",\"PeriodicalId\":10640,\"journal\":{\"name\":\"Cogent Chemistry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23312009.2016.1144296\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23312009.2016.1144296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23312009.2016.1144296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A green approach to synthesize controllable silver nanostructures from Limonia acidissima for inactivation of pathogenic bacteria
Abstract Controllable silver nanoparticles were developed by a green approach using extracts of both leaves and bark of Limonia acidissima tree. Due to the presence of phytochemical compounds in L. acidissima leaves and bark; such as saponins, phenolic compounds, phytosterols, and quinines present in extracts act as reductants, hence the silver nanoparticles were easily produced under mild conditions. The formation and kinetic study of silver nanoparticles were verified by UV–vis spectroscopy. Highly stable and uniform size silver nanoparticles were produced using bark extract reduction than leaf extract and confirmed by dynamic light scattering and transmission electron microscopy analysis. Further we applied antibacterial activity on both Escherichia coli and Bacillus subtilis. The results suggest that the silver nanoparticles suspension exhibits excellent antibacterial activity. The present study is a simple and eco-friendly approach for production of silver nanoparticles in the large scale up and could be easily commercialized, especially biological applications.