生态数据预测与可视化系统

Q1 Biochemistry, Genetics and Molecular Biology
Sorayya Malek, Cham Hui, L. C. Fong, Mogeeb A. A. Mosleh, P. Milow, S. K. Dhillon, Sharifah M. Syed
{"title":"生态数据预测与可视化系统","authors":"Sorayya Malek, Cham Hui, L. C. Fong, Mogeeb A. A. Mosleh, P. Milow, S. K. Dhillon, Sharifah M. Syed","doi":"10.1080/21553769.2015.1041167","DOIUrl":null,"url":null,"abstract":"Temporal patterns in ecological data can be visualized and communicated effectively through graphical means. The aim of this study was to develop a data prediction and visualization system based on historical data and thematic map technology to visualize forecast temporal ecological changes. The visualization system consists of prediction and data visualization modules. The prediction module is developed using a hybrid evolutionary algorithm (HEA) to classify and predict noisy ecological data. The visualization module is developed using Dotnet Framework 2.0 to implement thematic cartography for volume visualization. The visualization system is evaluated by its capability in representing the output data on a map, and by predicting the abundance of Chlorophyta based on other water quality parameters. Rules for predicting Chlorophyta abundance had a success rate of almost 90%. The integration of computational data mining using HEA and visualization using thematic maps promises practical solutions and better techniques for forecasting temporal ecological changes, especially when data sets have complex relationships without clear distinction between various variables.","PeriodicalId":12756,"journal":{"name":"Frontiers in Life Science","volume":"8 1","pages":"387 - 398"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21553769.2015.1041167","citationCount":"1","resultStr":"{\"title\":\"Ecological data prediction and visualization system\",\"authors\":\"Sorayya Malek, Cham Hui, L. C. Fong, Mogeeb A. A. Mosleh, P. Milow, S. K. Dhillon, Sharifah M. Syed\",\"doi\":\"10.1080/21553769.2015.1041167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal patterns in ecological data can be visualized and communicated effectively through graphical means. The aim of this study was to develop a data prediction and visualization system based on historical data and thematic map technology to visualize forecast temporal ecological changes. The visualization system consists of prediction and data visualization modules. The prediction module is developed using a hybrid evolutionary algorithm (HEA) to classify and predict noisy ecological data. The visualization module is developed using Dotnet Framework 2.0 to implement thematic cartography for volume visualization. The visualization system is evaluated by its capability in representing the output data on a map, and by predicting the abundance of Chlorophyta based on other water quality parameters. Rules for predicting Chlorophyta abundance had a success rate of almost 90%. The integration of computational data mining using HEA and visualization using thematic maps promises practical solutions and better techniques for forecasting temporal ecological changes, especially when data sets have complex relationships without clear distinction between various variables.\",\"PeriodicalId\":12756,\"journal\":{\"name\":\"Frontiers in Life Science\",\"volume\":\"8 1\",\"pages\":\"387 - 398\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21553769.2015.1041167\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Life Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21553769.2015.1041167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Life Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21553769.2015.1041167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

生态数据的时间格局可以通过图形化的手段进行可视化和有效的交流。本研究的目的是开发一个基于历史数据和专题地图技术的数据预测和可视化系统,以可视化预测时间生态变化。可视化系统由预测和数据可视化两个模块组成。预测模块采用混合进化算法(HEA)对噪声生态数据进行分类和预测。可视化模块采用Dotnet Framework 2.0开发,实现专题制图的体可视化。通过可视化系统在地图上表示输出数据的能力,以及基于其他水质参数预测绿藻丰度的能力,对该系统进行了评价。预测绿藻丰度的规则准确率接近90%。使用HEA的计算数据挖掘与使用专题地图的可视化相结合,为预测时间生态变化提供了实用的解决方案和更好的技术,特别是当数据集具有复杂的关系而各种变量之间没有明确区分时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecological data prediction and visualization system
Temporal patterns in ecological data can be visualized and communicated effectively through graphical means. The aim of this study was to develop a data prediction and visualization system based on historical data and thematic map technology to visualize forecast temporal ecological changes. The visualization system consists of prediction and data visualization modules. The prediction module is developed using a hybrid evolutionary algorithm (HEA) to classify and predict noisy ecological data. The visualization module is developed using Dotnet Framework 2.0 to implement thematic cartography for volume visualization. The visualization system is evaluated by its capability in representing the output data on a map, and by predicting the abundance of Chlorophyta based on other water quality parameters. Rules for predicting Chlorophyta abundance had a success rate of almost 90%. The integration of computational data mining using HEA and visualization using thematic maps promises practical solutions and better techniques for forecasting temporal ecological changes, especially when data sets have complex relationships without clear distinction between various variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Life Science
Frontiers in Life Science MULTIDISCIPLINARY SCIENCES-
CiteScore
5.50
自引率
0.00%
发文量
0
期刊介绍: Frontiers in Life Science publishes high quality and innovative research at the frontier of biology with an emphasis on interdisciplinary research. We particularly encourage manuscripts that lie at the interface of the life sciences and either the more quantitative sciences (including chemistry, physics, mathematics, and informatics) or the social sciences (philosophy, anthropology, sociology and epistemology). We believe that these various disciplines can all contribute to biological research and provide original insights to the most recurrent questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信