Naini Dawar, Mansi Chitkara, I. S. Sandhu, J. Jolly, S. Malhotra
{"title":"化学共沉淀法合成纯和掺镍钡纳米六铁氧体的结构、磁性和介电性能","authors":"Naini Dawar, Mansi Chitkara, I. S. Sandhu, J. Jolly, S. Malhotra","doi":"10.1080/23311940.2016.1208450","DOIUrl":null,"url":null,"abstract":"Abstract Nickel-doped barium nanohexaferrites with the chemical formula BaNixFe(12-x)O19 are prepared using the chemical co-precipitation technique. The calcination of the samples is done at 800°C for 4 h. In order to carry out the structural analysis that includes the crystallographic and the morphological investigations, X-ray diffraction and TEM are carried out to govern the phase, structure and the size of the crystal. By the use of Debye–Scherrer equation, the size of the crystallite is calculated to be in the range of 38–100 nm. TEM results reveal the magnetoplumbite structure of the hexaferrites. The M–H curve obtained using the Vibrating Sample Magnetometer computes the magnetic parameters like saturation magnetization, coercivity, remanence and verifies the behaviour of hexaferrites as hard magnetic materials. Further, the effect of variation in calcination temperature is also investigated on the values of magnetic parameters of hexaferrites. In order to carry out the investigations on the electrical properties of hexaferrites, the two-probe method and parallel plate capacitor set-up are used. The values of relative permittivity, dielectric loss and loss tangent are computed as a function of frequency. The values of DC electrical resistance for pure and nickel-doped barium nanohexaferrites are evaluated from the slope of I–V graphs.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2016.1208450","citationCount":"20","resultStr":"{\"title\":\"Structural, magnetic and dielectric properties of pure and nickel-doped barium nanohexaferrites synthesized using chemical co-precipitation technique\",\"authors\":\"Naini Dawar, Mansi Chitkara, I. S. Sandhu, J. Jolly, S. Malhotra\",\"doi\":\"10.1080/23311940.2016.1208450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nickel-doped barium nanohexaferrites with the chemical formula BaNixFe(12-x)O19 are prepared using the chemical co-precipitation technique. The calcination of the samples is done at 800°C for 4 h. In order to carry out the structural analysis that includes the crystallographic and the morphological investigations, X-ray diffraction and TEM are carried out to govern the phase, structure and the size of the crystal. By the use of Debye–Scherrer equation, the size of the crystallite is calculated to be in the range of 38–100 nm. TEM results reveal the magnetoplumbite structure of the hexaferrites. The M–H curve obtained using the Vibrating Sample Magnetometer computes the magnetic parameters like saturation magnetization, coercivity, remanence and verifies the behaviour of hexaferrites as hard magnetic materials. Further, the effect of variation in calcination temperature is also investigated on the values of magnetic parameters of hexaferrites. In order to carry out the investigations on the electrical properties of hexaferrites, the two-probe method and parallel plate capacitor set-up are used. The values of relative permittivity, dielectric loss and loss tangent are computed as a function of frequency. The values of DC electrical resistance for pure and nickel-doped barium nanohexaferrites are evaluated from the slope of I–V graphs.\",\"PeriodicalId\":43050,\"journal\":{\"name\":\"Cogent Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311940.2016.1208450\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311940.2016.1208450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2016.1208450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural, magnetic and dielectric properties of pure and nickel-doped barium nanohexaferrites synthesized using chemical co-precipitation technique
Abstract Nickel-doped barium nanohexaferrites with the chemical formula BaNixFe(12-x)O19 are prepared using the chemical co-precipitation technique. The calcination of the samples is done at 800°C for 4 h. In order to carry out the structural analysis that includes the crystallographic and the morphological investigations, X-ray diffraction and TEM are carried out to govern the phase, structure and the size of the crystal. By the use of Debye–Scherrer equation, the size of the crystallite is calculated to be in the range of 38–100 nm. TEM results reveal the magnetoplumbite structure of the hexaferrites. The M–H curve obtained using the Vibrating Sample Magnetometer computes the magnetic parameters like saturation magnetization, coercivity, remanence and verifies the behaviour of hexaferrites as hard magnetic materials. Further, the effect of variation in calcination temperature is also investigated on the values of magnetic parameters of hexaferrites. In order to carry out the investigations on the electrical properties of hexaferrites, the two-probe method and parallel plate capacitor set-up are used. The values of relative permittivity, dielectric loss and loss tangent are computed as a function of frequency. The values of DC electrical resistance for pure and nickel-doped barium nanohexaferrites are evaluated from the slope of I–V graphs.