矿物掺合料对CO2排放和吸收的影响与使用寿命和不同的CO2浓度有关

Q4 Engineering
Seung-Jun Kwon
{"title":"矿物掺合料对CO2排放和吸收的影响与使用寿命和不同的CO2浓度有关","authors":"Seung-Jun Kwon","doi":"10.1080/2093761X.2016.1237393","DOIUrl":null,"url":null,"abstract":"AbstractCarbonation is a critical deterioration phenomenon, particularly for underground reinforced concrete (RC) structures due to the surrounding environment having a high CO2 concentration. This paper presents an evaluation of CO2 emissions and absorption with varying intended service life periods based on actual geometry and mix ratios of concrete for RC underground structures. Four mix ratios of concrete and CO2 diffusion coefficient based micro modelling are considered, and the CO2 emission and storage are evaluated for each step with material production and conveyance. Simulations for the CO2 amount are also performed for varying intended service life periods and CO2 concentrations. As the intended service life increases, the CO2 emission rapidly increases due to the repeated repairs. In order to reduce CO2 emissions, reducing ordinary Portland cement (OPC) by replacing it with a mineral admixture like fly ash (FA) is a crucial point in the initial construction stage, since CO2 storage in use is li...","PeriodicalId":38108,"journal":{"name":"International Journal of Sustainable Building Technology and Urban Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2093761X.2016.1237393","citationCount":"6","resultStr":"{\"title\":\"Effect of mineral admixture on CO2 emissions and absorption in relation to service life and varying CO2 concentrations\",\"authors\":\"Seung-Jun Kwon\",\"doi\":\"10.1080/2093761X.2016.1237393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractCarbonation is a critical deterioration phenomenon, particularly for underground reinforced concrete (RC) structures due to the surrounding environment having a high CO2 concentration. This paper presents an evaluation of CO2 emissions and absorption with varying intended service life periods based on actual geometry and mix ratios of concrete for RC underground structures. Four mix ratios of concrete and CO2 diffusion coefficient based micro modelling are considered, and the CO2 emission and storage are evaluated for each step with material production and conveyance. Simulations for the CO2 amount are also performed for varying intended service life periods and CO2 concentrations. As the intended service life increases, the CO2 emission rapidly increases due to the repeated repairs. In order to reduce CO2 emissions, reducing ordinary Portland cement (OPC) by replacing it with a mineral admixture like fly ash (FA) is a crucial point in the initial construction stage, since CO2 storage in use is li...\",\"PeriodicalId\":38108,\"journal\":{\"name\":\"International Journal of Sustainable Building Technology and Urban Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/2093761X.2016.1237393\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Building Technology and Urban Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2093761X.2016.1237393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Building Technology and Urban Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2093761X.2016.1237393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

摘要

摘要碳化是一种严重的劣化现象,特别是对地下钢筋混凝土结构而言,由于其周围环境具有较高的CO2浓度。本文根据钢筋混凝土地下结构的实际几何形状和混凝土配合比,对不同预期使用寿命下的二氧化碳排放和吸收进行了评估。考虑了4种混凝土配合比和基于CO2扩散系数的微观模型,并对物料生产和输送各环节的CO2排放和储存量进行了评估。还对不同预期使用寿命和二氧化碳浓度的CO2量进行了模拟。随着预期使用寿命的增加,由于反复维修,二氧化碳排放量迅速增加。为了减少二氧化碳的排放,用粉煤灰(FA)等矿物外加剂代替普通硅酸盐水泥(OPC)来减少普通硅酸盐水泥(OPC)是施工初期的关键,因为使用中的二氧化碳储存量很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of mineral admixture on CO2 emissions and absorption in relation to service life and varying CO2 concentrations
AbstractCarbonation is a critical deterioration phenomenon, particularly for underground reinforced concrete (RC) structures due to the surrounding environment having a high CO2 concentration. This paper presents an evaluation of CO2 emissions and absorption with varying intended service life periods based on actual geometry and mix ratios of concrete for RC underground structures. Four mix ratios of concrete and CO2 diffusion coefficient based micro modelling are considered, and the CO2 emission and storage are evaluated for each step with material production and conveyance. Simulations for the CO2 amount are also performed for varying intended service life periods and CO2 concentrations. As the intended service life increases, the CO2 emission rapidly increases due to the repeated repairs. In order to reduce CO2 emissions, reducing ordinary Portland cement (OPC) by replacing it with a mineral admixture like fly ash (FA) is a crucial point in the initial construction stage, since CO2 storage in use is li...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: The International Journal of Sustainable Building Technology and Urban Development is the official publication of the Sustainable Building Research Center and serves as a resource to professionals and academics within the architecture and sustainability community. The International Journal of Sustainable Building Technology and Urban Development aims to support its academic community by disseminating studies on sustainable building technology, focusing on issues related to sustainable approaches in the construction industry to reduce waste and mass consumption, integration of advanced architectural technologies and environmentalism, sustainable building maintenance, life cycle cost (LCC), social issues, education and public policies relating to urban development and architecture .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信