化学强化一级处理(CEPT)处理废水的可行性及优化——以黄石市为例

Q3 Chemical Engineering
Qiulai He, Hongyu Wang, Congyuan Xu, Jing Zhang, Wei Zhang, Zhuocheng Zou, Kai Yang
{"title":"化学强化一级处理(CEPT)处理废水的可行性及优化——以黄石市为例","authors":"Qiulai He, Hongyu Wang, Congyuan Xu, Jing Zhang, Wei Zhang, Zhuocheng Zou, Kai Yang","doi":"10.1080/09542299.2016.1247657","DOIUrl":null,"url":null,"abstract":"Abstract Carbon and nutrients as well as suspended solids (SS) removal by chemically enhanced primary treatment (CEPT) were conducted in the Qingshan wastewater treatment plant in Huangshi, Hubei Province. Feasibility of this process for wastewater treatment were investigated in detail by comparing the removal performance of three inorganic chemical coagulants (polyaluminium chloride, polyaluminium ferric chloride [PAFC] and poly ferric sulfate) individual or couple with poly acrylamide, optimizing the conditions during CEPT by both single factor analysis and orthogonal test designs. The results of this study demonstrated that CEPT turned out to be an effective method for wastewater treatment, with PAFC as the optimal coagulant, which showed preeminent removal capacity for chemical oxygen demand, total phosphorus and SS. The optimal working condition could be at pH 7.0, settling time 15 min, and velocity gradient of 174.80 and 15.56 s−1 for mixing and reaction phase respectively. While the coagulant dosage depends on raw water attributes, which had a decisive effect on CEPT treatment performances. However, the three coagulants behaved poorly in nitrogen removal.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"28 1","pages":"209 - 215"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2016.1247657","citationCount":"10","resultStr":"{\"title\":\"Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): a case study of Huangshi\",\"authors\":\"Qiulai He, Hongyu Wang, Congyuan Xu, Jing Zhang, Wei Zhang, Zhuocheng Zou, Kai Yang\",\"doi\":\"10.1080/09542299.2016.1247657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Carbon and nutrients as well as suspended solids (SS) removal by chemically enhanced primary treatment (CEPT) were conducted in the Qingshan wastewater treatment plant in Huangshi, Hubei Province. Feasibility of this process for wastewater treatment were investigated in detail by comparing the removal performance of three inorganic chemical coagulants (polyaluminium chloride, polyaluminium ferric chloride [PAFC] and poly ferric sulfate) individual or couple with poly acrylamide, optimizing the conditions during CEPT by both single factor analysis and orthogonal test designs. The results of this study demonstrated that CEPT turned out to be an effective method for wastewater treatment, with PAFC as the optimal coagulant, which showed preeminent removal capacity for chemical oxygen demand, total phosphorus and SS. The optimal working condition could be at pH 7.0, settling time 15 min, and velocity gradient of 174.80 and 15.56 s−1 for mixing and reaction phase respectively. While the coagulant dosage depends on raw water attributes, which had a decisive effect on CEPT treatment performances. However, the three coagulants behaved poorly in nitrogen removal.\",\"PeriodicalId\":55264,\"journal\":{\"name\":\"Chemical Speciation and Bioavailability\",\"volume\":\"28 1\",\"pages\":\"209 - 215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09542299.2016.1247657\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Speciation and Bioavailability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09542299.2016.1247657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2016.1247657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 10

摘要

摘要在湖北省黄石市青山污水处理厂进行了化学强化一级处理(CEPT)去除碳、营养物和悬浮物(SS)的试验研究。通过比较聚合氯化铝、聚合氯化铝铁和聚合硫酸铁这三种无机化学混凝剂单独或与聚丙烯酰胺偶联的去除率,详细考察了该工艺处理废水的可行性,并通过单因素分析和正交试验设计对CEPT工艺条件进行了优化。本研究结果表明,CEPT是一种有效的废水处理方法,以PAFC为最佳混凝剂,对化学需氧量、总磷和SS具有优异的去除能力,最佳工作条件为pH 7.0,沉降时间15 min,混合和反应相流速梯度分别为174.80和15.56 s−1。混凝剂投加量与原水性质有关,对CEPT处理性能有决定性影响。然而,三种混凝剂的脱氮性能较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): a case study of Huangshi
Abstract Carbon and nutrients as well as suspended solids (SS) removal by chemically enhanced primary treatment (CEPT) were conducted in the Qingshan wastewater treatment plant in Huangshi, Hubei Province. Feasibility of this process for wastewater treatment were investigated in detail by comparing the removal performance of three inorganic chemical coagulants (polyaluminium chloride, polyaluminium ferric chloride [PAFC] and poly ferric sulfate) individual or couple with poly acrylamide, optimizing the conditions during CEPT by both single factor analysis and orthogonal test designs. The results of this study demonstrated that CEPT turned out to be an effective method for wastewater treatment, with PAFC as the optimal coagulant, which showed preeminent removal capacity for chemical oxygen demand, total phosphorus and SS. The optimal working condition could be at pH 7.0, settling time 15 min, and velocity gradient of 174.80 and 15.56 s−1 for mixing and reaction phase respectively. While the coagulant dosage depends on raw water attributes, which had a decisive effect on CEPT treatment performances. However, the three coagulants behaved poorly in nitrogen removal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信