西北多金属污染土壤中镉、铅的化学形态及其对油菜的生物有效性

Q3 Chemical Engineering
Yiming Yang, Yu Li, Jihui Zhang
{"title":"西北多金属污染土壤中镉、铅的化学形态及其对油菜的生物有效性","authors":"Yiming Yang, Yu Li, Jihui Zhang","doi":"10.1080/09542299.2016.1157005","DOIUrl":null,"url":null,"abstract":"Abstract A pot experiment was conducted to study the relationship between speciation distribution of cadmium (Cd) and lead (Pb) and their availability to cole (Brassica campestris L.) grown on the Cd–Pb polluted soil in northwest of China. The results showed that Cd in the unpolluted soil was mainly bound to carbonate fraction (F2) and Fe–Mn oxide fraction (F3), and Pb was mainly bound to carbonate fraction (F2) and residual fraction (F5). However, marked change of Cd and Pb fractionation was observed with increasing soil Cd and Pb concentrations, where the concentrations of Cd in F1 (exchangeable fraction), F2 and F3 increased significantly (p < 0.001 for F1, F2 and F3), and Pb in F1, F2, F3 and F4 increased significantly (p < 0.001 for F1, F2, F3 and F4).The correlation analysis between the fraction distribution coefficient of Cd and Pb in the soil and Cd and Pb concentration accumulated in cole showed that both Cd and Pb in F1 fraction in the soil made the greatest contribution on the accumulation of Cd and Pb in cole. Higher bio-concentration factors (BCFs) and translocation factors (TFs) for Cd and lower BCFs and TFs for Pb were observed in the cole, respectively. Cd had higher accumulation in the edible parts of the cole, but Pb had lower accumulation in that. Therefore, Cd has higher risk to human health than Pb when people eat the coles grown in Cd–Pb polluted soil in northwestern China.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"28 1","pages":"33 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2016.1157005","citationCount":"26","resultStr":"{\"title\":\"Chemical speciation of cadmium and lead and their bioavailability to cole (Brassica campestris L.) from multi-metals contaminated soil in northwestern China\",\"authors\":\"Yiming Yang, Yu Li, Jihui Zhang\",\"doi\":\"10.1080/09542299.2016.1157005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A pot experiment was conducted to study the relationship between speciation distribution of cadmium (Cd) and lead (Pb) and their availability to cole (Brassica campestris L.) grown on the Cd–Pb polluted soil in northwest of China. The results showed that Cd in the unpolluted soil was mainly bound to carbonate fraction (F2) and Fe–Mn oxide fraction (F3), and Pb was mainly bound to carbonate fraction (F2) and residual fraction (F5). However, marked change of Cd and Pb fractionation was observed with increasing soil Cd and Pb concentrations, where the concentrations of Cd in F1 (exchangeable fraction), F2 and F3 increased significantly (p < 0.001 for F1, F2 and F3), and Pb in F1, F2, F3 and F4 increased significantly (p < 0.001 for F1, F2, F3 and F4).The correlation analysis between the fraction distribution coefficient of Cd and Pb in the soil and Cd and Pb concentration accumulated in cole showed that both Cd and Pb in F1 fraction in the soil made the greatest contribution on the accumulation of Cd and Pb in cole. Higher bio-concentration factors (BCFs) and translocation factors (TFs) for Cd and lower BCFs and TFs for Pb were observed in the cole, respectively. Cd had higher accumulation in the edible parts of the cole, but Pb had lower accumulation in that. Therefore, Cd has higher risk to human health than Pb when people eat the coles grown in Cd–Pb polluted soil in northwestern China.\",\"PeriodicalId\":55264,\"journal\":{\"name\":\"Chemical Speciation and Bioavailability\",\"volume\":\"28 1\",\"pages\":\"33 - 41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09542299.2016.1157005\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Speciation and Bioavailability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09542299.2016.1157005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2016.1157005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 26

摘要

摘要通过盆栽试验,研究了西北地区Cd - Pb污染土壤中镉(Cd)和铅(Pb)形态分布与油菜有效度的关系。结果表明:未污染土壤中Cd主要以碳酸盐组分(F2)和Fe-Mn氧化物组分(F3)结合,Pb主要以碳酸盐组分(F2)和残余组分(F5)结合。Cd、Pb分异随土壤Cd、Pb浓度的增加而发生显著变化,其中F1、F2、F3中Cd(可交换分数)、F2、F3中Cd浓度显著升高(p < 0.001), F1、F2、F3、F4中Pb浓度显著升高(p < 0.001)。土壤中Cd、Pb分数分配系数与油菜中Cd、Pb积累浓度的相关分析表明,土壤F1分数中Cd、Pb对油菜中Cd、Pb积累的贡献最大。油菜中Cd的生物浓度因子(BCFs)和转运因子(TFs)较高,Pb的BCFs和转运因子较低。Cd在油菜可食部位积累量较大,Pb在油菜可食部位积累量较小。因此,食用在中国西北地区Cd - Pb污染土壤中生长的油菜,Cd对人体健康的风险高于Pb。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical speciation of cadmium and lead and their bioavailability to cole (Brassica campestris L.) from multi-metals contaminated soil in northwestern China
Abstract A pot experiment was conducted to study the relationship between speciation distribution of cadmium (Cd) and lead (Pb) and their availability to cole (Brassica campestris L.) grown on the Cd–Pb polluted soil in northwest of China. The results showed that Cd in the unpolluted soil was mainly bound to carbonate fraction (F2) and Fe–Mn oxide fraction (F3), and Pb was mainly bound to carbonate fraction (F2) and residual fraction (F5). However, marked change of Cd and Pb fractionation was observed with increasing soil Cd and Pb concentrations, where the concentrations of Cd in F1 (exchangeable fraction), F2 and F3 increased significantly (p < 0.001 for F1, F2 and F3), and Pb in F1, F2, F3 and F4 increased significantly (p < 0.001 for F1, F2, F3 and F4).The correlation analysis between the fraction distribution coefficient of Cd and Pb in the soil and Cd and Pb concentration accumulated in cole showed that both Cd and Pb in F1 fraction in the soil made the greatest contribution on the accumulation of Cd and Pb in cole. Higher bio-concentration factors (BCFs) and translocation factors (TFs) for Cd and lower BCFs and TFs for Pb were observed in the cole, respectively. Cd had higher accumulation in the edible parts of the cole, but Pb had lower accumulation in that. Therefore, Cd has higher risk to human health than Pb when people eat the coles grown in Cd–Pb polluted soil in northwestern China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信