重复-删除随机图模型的渐近度分布

Q3 Mathematics
Erik Thornblad
{"title":"重复-删除随机图模型的渐近度分布","authors":"Erik Thornblad","doi":"10.1080/15427951.2015.1009523","DOIUrl":null,"url":null,"abstract":"We study a discrete–time duplication–deletion random graph model and analyse its asymptotic degree distribution. The random graphs consists of disjoint cliques. In each time step either a new vertex is brought in with probability 0 < p < 1 and attached to an existing clique, chosen with probability proportional to the clique size, or all the edges of a random vertex are deleted with probability 1 − p. We prove almost sure convergence of the asymptotic degree distribution and find its exact values in terms of a hypergeometric integral, expressed in terms of the parameter p. In the regime 0 < p < 1 2 we show that the degree sequence decays exponentially at rate p 1−p , whereas it satisfies a power–law with exponent p 2p−1 if 1 2 < p < 1. At the threshold p = 1 2 the degree sequence lies between a power–law and exponential decay.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2015.1009523","citationCount":"13","resultStr":"{\"title\":\"Asymptotic degree distribution of a duplication-deletion random graph model\",\"authors\":\"Erik Thornblad\",\"doi\":\"10.1080/15427951.2015.1009523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a discrete–time duplication–deletion random graph model and analyse its asymptotic degree distribution. The random graphs consists of disjoint cliques. In each time step either a new vertex is brought in with probability 0 < p < 1 and attached to an existing clique, chosen with probability proportional to the clique size, or all the edges of a random vertex are deleted with probability 1 − p. We prove almost sure convergence of the asymptotic degree distribution and find its exact values in terms of a hypergeometric integral, expressed in terms of the parameter p. In the regime 0 < p < 1 2 we show that the degree sequence decays exponentially at rate p 1−p , whereas it satisfies a power–law with exponent p 2p−1 if 1 2 < p < 1. At the threshold p = 1 2 the degree sequence lies between a power–law and exponential decay.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2015.1009523\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2015.1009523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2015.1009523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

摘要

研究了一种离散时间重复删除随机图模型,并分析了其渐近度分布。随机图由不相交的团组成。在每个时间步中,要么以概率0 < p < 1的方式引入一个新的顶点,并以与团大小成比例的概率选择一个新的团,要么以概率1−p的方式删除一个随机顶点的所有边。我们证明了渐近度分布的几乎肯定收敛性,并找到了它在超几何积分中的精确值。在区间0 < p < 1 2中,我们证明了度序列以p 1−p的速率呈指数衰减,而当1 2 < p < 1时,它满足指数为p 2p−1的幂律。在阈值p = 12时,度序列位于幂律和指数衰减之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic degree distribution of a duplication-deletion random graph model
We study a discrete–time duplication–deletion random graph model and analyse its asymptotic degree distribution. The random graphs consists of disjoint cliques. In each time step either a new vertex is brought in with probability 0 < p < 1 and attached to an existing clique, chosen with probability proportional to the clique size, or all the edges of a random vertex are deleted with probability 1 − p. We prove almost sure convergence of the asymptotic degree distribution and find its exact values in terms of a hypergeometric integral, expressed in terms of the parameter p. In the regime 0 < p < 1 2 we show that the degree sequence decays exponentially at rate p 1−p , whereas it satisfies a power–law with exponent p 2p−1 if 1 2 < p < 1. At the threshold p = 1 2 the degree sequence lies between a power–law and exponential decay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信