用热核Pagerank求解具有边界条件的局部线性系统

Q3 Mathematics
F. Graham, O. Simpson
{"title":"用热核Pagerank求解具有边界条件的局部线性系统","authors":"F. Graham, O. Simpson","doi":"10.1080/15427951.2015.1009522","DOIUrl":null,"url":null,"abstract":"We present an efficient algorithm for solving local linear systems with a boundary condition using the Green’s function of a connected induced subgraph related to the system. We introduce the method of using the Dirichlet heat kernel pagerank1 vector to approximate local solutions to linear systems in the graph Laplacian, satisfying given boundary conditions over a particular subset of vertices. With an efficient algorithm for approximating Dirichlet heat kernel pagerank, our Local Linear Solver algorithm computes an approximate local solution with multiplicative and additive error ε by performing O(ε−5s3log (s3ε−1)log n) random walk steps, where n is the number of vertices in the full graph, and s is the size of the local system on the induced subgraph.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2015.1009522","citationCount":"9","resultStr":"{\"title\":\"Solving Local Linear Systems with Boundary Conditions Using Heat Kernel Pagerank\",\"authors\":\"F. Graham, O. Simpson\",\"doi\":\"10.1080/15427951.2015.1009522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient algorithm for solving local linear systems with a boundary condition using the Green’s function of a connected induced subgraph related to the system. We introduce the method of using the Dirichlet heat kernel pagerank1 vector to approximate local solutions to linear systems in the graph Laplacian, satisfying given boundary conditions over a particular subset of vertices. With an efficient algorithm for approximating Dirichlet heat kernel pagerank, our Local Linear Solver algorithm computes an approximate local solution with multiplicative and additive error ε by performing O(ε−5s3log (s3ε−1)log n) random walk steps, where n is the number of vertices in the full graph, and s is the size of the local system on the induced subgraph.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2015.1009522\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2015.1009522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2015.1009522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

摘要

利用与该系统相关的连通诱导子图的格林函数,给出了求解具有边界条件的局部线性系统的有效算法。我们介绍了使用Dirichlet热核pagerank1向量来近似图拉普拉斯线性系统的局部解的方法,在特定的顶点子集上满足给定的边界条件。我们的局部线性解算器算法是一种有效的近似Dirichlet热核pagerank的算法,通过执行O(ε−5s3log (s3ε−1)log n)个随机漫步步来计算一个近似的局部解,其乘性和可加性误差为ε,其中n为完整图中的顶点数,s为诱导子图上局部系统的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Local Linear Systems with Boundary Conditions Using Heat Kernel Pagerank
We present an efficient algorithm for solving local linear systems with a boundary condition using the Green’s function of a connected induced subgraph related to the system. We introduce the method of using the Dirichlet heat kernel pagerank1 vector to approximate local solutions to linear systems in the graph Laplacian, satisfying given boundary conditions over a particular subset of vertices. With an efficient algorithm for approximating Dirichlet heat kernel pagerank, our Local Linear Solver algorithm computes an approximate local solution with multiplicative and additive error ε by performing O(ε−5s3log (s3ε−1)log n) random walk steps, where n is the number of vertices in the full graph, and s is the size of the local system on the induced subgraph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信