复杂网络的聚类与双曲几何

Q3 Mathematics
Elisabetta Candellero, N. Fountoulakis
{"title":"复杂网络的聚类与双曲几何","authors":"Elisabetta Candellero, N. Fountoulakis","doi":"10.1080/15427951.2015.1067848","DOIUrl":null,"url":null,"abstract":"Abstract Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks, or social networks. In this article, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was proposed recently by Krioukov and colleagues as a mathematical model of complex networks, under the fundamental assumption that hyperbolic geometry underlies the structure of these networks. We give a rigorous analysis of clustering and characterize the global clustering coefficient in terms of the parameters of the model. We show how the global clustering coefficient can be tuned by these parameters and we give an explicit formula for this function.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"12 1","pages":"2 - 53"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2015.1067848","citationCount":"20","resultStr":"{\"title\":\"Clustering and the Hyperbolic Geometry of Complex Networks\",\"authors\":\"Elisabetta Candellero, N. Fountoulakis\",\"doi\":\"10.1080/15427951.2015.1067848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks, or social networks. In this article, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was proposed recently by Krioukov and colleagues as a mathematical model of complex networks, under the fundamental assumption that hyperbolic geometry underlies the structure of these networks. We give a rigorous analysis of clustering and characterize the global clustering coefficient in terms of the parameters of the model. We show how the global clustering coefficient can be tuned by these parameters and we give an explicit formula for this function.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"12 1\",\"pages\":\"2 - 53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2015.1067848\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2015.1067848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2015.1067848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 20

摘要

聚类是复杂网络的一个基本特性,是对各种自组织网络(如生物网络、计算机网络或社会网络)中普遍存在的现象的数学表达。在本文中,我们考虑了所谓的双曲平面上随机图的全局聚类系数。这种随机图模型是最近由Krioukov及其同事提出的,作为复杂网络的数学模型,其基本假设是这些网络的结构是由双曲几何构成的。我们对聚类进行了严格的分析,并根据模型的参数描述了全局聚类系数。我们展示了如何通过这些参数来调整全局聚类系数,并给出了该函数的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering and the Hyperbolic Geometry of Complex Networks
Abstract Clustering is a fundamental property of complex networks and it is the mathematical expression of a ubiquitous phenomenon that arises in various types of self-organized networks such as biological networks, computer networks, or social networks. In this article, we consider what is called the global clustering coefficient of random graphs on the hyperbolic plane. This model of random graphs was proposed recently by Krioukov and colleagues as a mathematical model of complex networks, under the fundamental assumption that hyperbolic geometry underlies the structure of these networks. We give a rigorous analysis of clustering and characterize the global clustering coefficient in terms of the parameters of the model. We show how the global clustering coefficient can be tuned by these parameters and we give an explicit formula for this function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信