{"title":"网络中顶点相似度的量化","authors":"Charalampos E. Tsourakakis","doi":"10.1080/15427951.2013.836581","DOIUrl":null,"url":null,"abstract":"Abstract Vertex similarity is a major concept in network science with a wide range of applications. In this work we provide novel perspectives on finding (dis)similar vertices within a network and across two networks with the same number of vertices (graph matching). With respect to the former problem, we propose to optimize a geometric objective that allows us to express each vertex uniquely as a convex combination of a few extreme types of vertices. Our method has the important advantage of supporting efficiently several types of queries such as, which other vertices are most similar to this vertex? by using appropriate data structures and by mining interesting patterns in the network. With respect to the latter problem (graph matching) we propose the generalized condition number—a quantity widely used in numerical analysis— κ(LG, LH) of the Laplacian matrix representations of G, H as a measure of graph similarity, where G, H are the graphs of interest. We show that this objective has a solid theoretical basis, and, we propose a deterministic and a randomized graph alignment algorithm. We evaluate our algorithms on both synthetic and real data. We observe that our proposed methods achieve high-quality results and provide us with significant insights into the network structure.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2013.836581","citationCount":"13","resultStr":"{\"title\":\"Toward Quantifying Vertex Similarity in Networks\",\"authors\":\"Charalampos E. Tsourakakis\",\"doi\":\"10.1080/15427951.2013.836581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Vertex similarity is a major concept in network science with a wide range of applications. In this work we provide novel perspectives on finding (dis)similar vertices within a network and across two networks with the same number of vertices (graph matching). With respect to the former problem, we propose to optimize a geometric objective that allows us to express each vertex uniquely as a convex combination of a few extreme types of vertices. Our method has the important advantage of supporting efficiently several types of queries such as, which other vertices are most similar to this vertex? by using appropriate data structures and by mining interesting patterns in the network. With respect to the latter problem (graph matching) we propose the generalized condition number—a quantity widely used in numerical analysis— κ(LG, LH) of the Laplacian matrix representations of G, H as a measure of graph similarity, where G, H are the graphs of interest. We show that this objective has a solid theoretical basis, and, we propose a deterministic and a randomized graph alignment algorithm. We evaluate our algorithms on both synthetic and real data. We observe that our proposed methods achieve high-quality results and provide us with significant insights into the network structure.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2013.836581\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2013.836581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2013.836581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Abstract Vertex similarity is a major concept in network science with a wide range of applications. In this work we provide novel perspectives on finding (dis)similar vertices within a network and across two networks with the same number of vertices (graph matching). With respect to the former problem, we propose to optimize a geometric objective that allows us to express each vertex uniquely as a convex combination of a few extreme types of vertices. Our method has the important advantage of supporting efficiently several types of queries such as, which other vertices are most similar to this vertex? by using appropriate data structures and by mining interesting patterns in the network. With respect to the latter problem (graph matching) we propose the generalized condition number—a quantity widely used in numerical analysis— κ(LG, LH) of the Laplacian matrix representations of G, H as a measure of graph similarity, where G, H are the graphs of interest. We show that this objective has a solid theoretical basis, and, we propose a deterministic and a randomized graph alignment algorithm. We evaluate our algorithms on both synthetic and real data. We observe that our proposed methods achieve high-quality results and provide us with significant insights into the network structure.