随机交图处理

Q3 Mathematics
M. Bloznelis, M. Karonski
{"title":"随机交图处理","authors":"M. Bloznelis, M. Karonski","doi":"10.1080/15427951.2014.982310","DOIUrl":null,"url":null,"abstract":"Vertices of an affiliation network are linked to features and two vertices are declared adjacent whenever they share a common feature. We introduce a random intersection graph process aimed at modeling sparse evolving affiliation networks. We establish the asymptotic degree distribution and provide explicit asymptotic formulas for assortativity and clustering coefficients and show how these edge dependence characteristics vary over time.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2014.982310","citationCount":"7","resultStr":"{\"title\":\"Random Intersection Graph Process\",\"authors\":\"M. Bloznelis, M. Karonski\",\"doi\":\"10.1080/15427951.2014.982310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertices of an affiliation network are linked to features and two vertices are declared adjacent whenever they share a common feature. We introduce a random intersection graph process aimed at modeling sparse evolving affiliation networks. We establish the asymptotic degree distribution and provide explicit asymptotic formulas for assortativity and clustering coefficients and show how these edge dependence characteristics vary over time.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2014.982310\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2014.982310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2014.982310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

摘要

隶属网络的顶点与特征相关联,当两个顶点具有共同的特征时,它们被声明为相邻。我们引入了一种随机相交图处理方法,用于稀疏演化关联网络的建模。我们建立了渐近度分布,并为分类系数和聚类系数提供了明确的渐近公式,并展示了这些边依赖特性如何随时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Intersection Graph Process
Vertices of an affiliation network are linked to features and two vertices are declared adjacent whenever they share a common feature. We introduce a random intersection graph process aimed at modeling sparse evolving affiliation networks. We establish the asymptotic degree distribution and provide explicit asymptotic formulas for assortativity and clustering coefficients and show how these edge dependence characteristics vary over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信