连接图的排序与稀疏

Q3 Mathematics
F. Graham, Wenbo Zhao, Mark Kempton
{"title":"连接图的排序与稀疏","authors":"F. Graham, Wenbo Zhao, Mark Kempton","doi":"10.1080/15427951.2013.800005","DOIUrl":null,"url":null,"abstract":"Abstract Many problems arising in dealing with high-dimensional data sets involve connection graphs in which each edge is associated with both an edge weight and a d-dimensional linear transformation. We consider vectorized versions of PageRank and effective resistance that can be used as basic tools for organizing and analyzing complex data sets. For example, generalized PageRank and effective resistance can be utilized to derive and modify diffusion distances for vector diffusion maps in data and image processing. Furthermore, the edge-ranking of the connection graphs determined by vectorized PageRank and effective resistance are an essential part of sparsification algorithms that simplify and preserve the global structure of connection graphs. In addition, we examine consistencies in a connection graph, particularly in the applications of recovering low-dimensional data sets and the reduction of noise. In these applications, we analyze the effect of deleting edges with high edge rank.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2013.800005","citationCount":"23","resultStr":"{\"title\":\"Ranking and Sparsifying a Connection Graph\",\"authors\":\"F. Graham, Wenbo Zhao, Mark Kempton\",\"doi\":\"10.1080/15427951.2013.800005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Many problems arising in dealing with high-dimensional data sets involve connection graphs in which each edge is associated with both an edge weight and a d-dimensional linear transformation. We consider vectorized versions of PageRank and effective resistance that can be used as basic tools for organizing and analyzing complex data sets. For example, generalized PageRank and effective resistance can be utilized to derive and modify diffusion distances for vector diffusion maps in data and image processing. Furthermore, the edge-ranking of the connection graphs determined by vectorized PageRank and effective resistance are an essential part of sparsification algorithms that simplify and preserve the global structure of connection graphs. In addition, we examine consistencies in a connection graph, particularly in the applications of recovering low-dimensional data sets and the reduction of noise. In these applications, we analyze the effect of deleting edges with high edge rank.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2013.800005\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2013.800005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2013.800005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 23

摘要

在处理高维数据集时出现的许多问题涉及到连接图,其中每条边都与边权和d维线性变换相关联。我们考虑了PageRank的矢量化版本和有效阻力,它们可以用作组织和分析复杂数据集的基本工具。例如,在数据和图像处理中,可以利用广义PageRank和有效阻力来推导和修改矢量扩散图的扩散距离。此外,通过向量化PageRank确定连接图的边缘排序和有效阻力是简化和保持连接图全局结构的稀疏化算法的重要组成部分。此外,我们还研究了连接图中的一致性,特别是在恢复低维数据集和降低噪声的应用中。在这些应用中,我们分析了删除高秩边的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ranking and Sparsifying a Connection Graph
Abstract Many problems arising in dealing with high-dimensional data sets involve connection graphs in which each edge is associated with both an edge weight and a d-dimensional linear transformation. We consider vectorized versions of PageRank and effective resistance that can be used as basic tools for organizing and analyzing complex data sets. For example, generalized PageRank and effective resistance can be utilized to derive and modify diffusion distances for vector diffusion maps in data and image processing. Furthermore, the edge-ranking of the connection graphs determined by vectorized PageRank and effective resistance are an essential part of sparsification algorithms that simplify and preserve the global structure of connection graphs. In addition, we examine consistencies in a connection graph, particularly in the applications of recovering low-dimensional data sets and the reduction of noise. In these applications, we analyze the effect of deleting edges with high edge rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信