K. Avrachenkov, Nelly Litvak, Marina Sokol, Donald F. Towsley
{"title":"大度节点的快速检测","authors":"K. Avrachenkov, Nelly Litvak, Marina Sokol, Donald F. Towsley","doi":"10.1080/15427951.2013.798601","DOIUrl":null,"url":null,"abstract":"Abstract Our goal is to find top-k lists of nodes with the largest degrees in large complex networks quickly. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find the top-k list of nodes with the largest degrees requires an average complexity of , where n is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use a random-walk-based method. We show theoretically and by numerical experiments that for large networks, the random-walk method finds good-quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random-walk method that requires very little knowledge about the structure of the network.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"10 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2013.798601","citationCount":"26","resultStr":"{\"title\":\"Quick Detection of Nodes with Large Degrees\",\"authors\":\"K. Avrachenkov, Nelly Litvak, Marina Sokol, Donald F. Towsley\",\"doi\":\"10.1080/15427951.2013.798601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our goal is to find top-k lists of nodes with the largest degrees in large complex networks quickly. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find the top-k list of nodes with the largest degrees requires an average complexity of , where n is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use a random-walk-based method. We show theoretically and by numerical experiments that for large networks, the random-walk method finds good-quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random-walk method that requires very little knowledge about the structure of the network.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"10 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2013.798601\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2013.798601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2013.798601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Abstract Our goal is to find top-k lists of nodes with the largest degrees in large complex networks quickly. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find the top-k list of nodes with the largest degrees requires an average complexity of , where n is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use a random-walk-based method. We show theoretically and by numerical experiments that for large networks, the random-walk method finds good-quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random-walk method that requires very little knowledge about the structure of the network.