大度节点的快速检测

Q3 Mathematics
K. Avrachenkov, Nelly Litvak, Marina Sokol, Donald F. Towsley
{"title":"大度节点的快速检测","authors":"K. Avrachenkov, Nelly Litvak, Marina Sokol, Donald F. Towsley","doi":"10.1080/15427951.2013.798601","DOIUrl":null,"url":null,"abstract":"Abstract Our goal is to find top-k lists of nodes with the largest degrees in large complex networks quickly. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find the top-k list of nodes with the largest degrees requires an average complexity of , where n is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use a random-walk-based method. We show theoretically and by numerical experiments that for large networks, the random-walk method finds good-quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random-walk method that requires very little knowledge about the structure of the network.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"10 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2013.798601","citationCount":"26","resultStr":"{\"title\":\"Quick Detection of Nodes with Large Degrees\",\"authors\":\"K. Avrachenkov, Nelly Litvak, Marina Sokol, Donald F. Towsley\",\"doi\":\"10.1080/15427951.2013.798601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our goal is to find top-k lists of nodes with the largest degrees in large complex networks quickly. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find the top-k list of nodes with the largest degrees requires an average complexity of , where n is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use a random-walk-based method. We show theoretically and by numerical experiments that for large networks, the random-walk method finds good-quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random-walk method that requires very little knowledge about the structure of the network.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"10 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2013.798601\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2013.798601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2013.798601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 26

摘要

我们的目标是快速找到大型复杂网络中度最大的节点top-k列表。如果网络的邻接表是已知的(在复杂网络中并不常见),那么找到top-k的度最大的节点列表的确定性算法需要的平均复杂度为,其中n是网络中的节点数。即使这种适度的复杂性对于大型复杂网络来说也可能非常高。我们建议使用基于随机行走的方法。我们通过理论和数值实验表明,对于大型网络,随机行走方法以高概率找到高质量的节点顶级列表,并节省了数量级的计算。我们还提出了随机漫步方法的停止准则,该方法对网络结构的了解很少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quick Detection of Nodes with Large Degrees
Abstract Our goal is to find top-k lists of nodes with the largest degrees in large complex networks quickly. If the adjacency list of the network is known (not often the case in complex networks), a deterministic algorithm to find the top-k list of nodes with the largest degrees requires an average complexity of , where n is the number of nodes in the network. Even this modest complexity can be very high for large complex networks. We propose to use a random-walk-based method. We show theoretically and by numerical experiments that for large networks, the random-walk method finds good-quality top lists of nodes with high probability and with computational savings of orders of magnitude. We also propose stopping criteria for the random-walk method that requires very little knowledge about the structure of the network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信