基于矩的随机Kronecker图参数估计

Q3 Mathematics
D. Gleich, A. Owen
{"title":"基于矩的随机Kronecker图参数估计","authors":"D. Gleich, A. Owen","doi":"10.1080/15427951.2012.680824","DOIUrl":null,"url":null,"abstract":"Abstract Stochastic Kronecker graphs supply a parsimonious model for large sparse real-world graphs. They can specify the distribution of a large random graph using only three or four parameters. Those parameters have, however, proved difficult to choose in specific applications. This article looks at method-of-moments estimators that are computationally much simpler than maximum likelihood. The estimators are fast, and in our examples, they typically yield Kronecker parameters with expected feature counts closer to a given graph than we get from KronFit. The improvement is especially prominent for the number of triangles in the graph.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"232 - 256"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.680824","citationCount":"39","resultStr":"{\"title\":\"Moment-Based Estimation of Stochastic Kronecker Graph Parameters\",\"authors\":\"D. Gleich, A. Owen\",\"doi\":\"10.1080/15427951.2012.680824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Stochastic Kronecker graphs supply a parsimonious model for large sparse real-world graphs. They can specify the distribution of a large random graph using only three or four parameters. Those parameters have, however, proved difficult to choose in specific applications. This article looks at method-of-moments estimators that are computationally much simpler than maximum likelihood. The estimators are fast, and in our examples, they typically yield Kronecker parameters with expected feature counts closer to a given graph than we get from KronFit. The improvement is especially prominent for the number of triangles in the graph.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"8 1\",\"pages\":\"232 - 256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2012.680824\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2012.680824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2012.680824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 39

摘要

随机Kronecker图为现实世界的大型稀疏图提供了一种简约模型。它们可以只使用三到四个参数来指定大型随机图的分布。然而,这些参数在具体应用中很难选择。本文着眼于矩法估计,它在计算上比最大似然简单得多。估计器速度很快,在我们的例子中,它们通常产生的Kronecker参数的预期特征计数比我们从KronFit中得到的更接近给定图。这种改进对于图中三角形的数量尤其突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment-Based Estimation of Stochastic Kronecker Graph Parameters
Abstract Stochastic Kronecker graphs supply a parsimonious model for large sparse real-world graphs. They can specify the distribution of a large random graph using only three or four parameters. Those parameters have, however, proved difficult to choose in specific applications. This article looks at method-of-moments estimators that are computationally much simpler than maximum likelihood. The estimators are fast, and in our examples, they typically yield Kronecker parameters with expected feature counts closer to a given graph than we get from KronFit. The improvement is especially prominent for the number of triangles in the graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信