基于信任和不信任的Dirichlet PageRank和排序算法

Q3 Mathematics
F. Graham, Alexander Tsiatas, Wensong Xu
{"title":"基于信任和不信任的Dirichlet PageRank和排序算法","authors":"F. Graham, Alexander Tsiatas, Wensong Xu","doi":"10.1080/15427951.2012.678194","DOIUrl":null,"url":null,"abstract":"Motivated by numerous models of representing trust and distrust within a network ranking system, we examine a quantitative vertex ranking with consideration of the influence of a subset of nodes. We propose and analyze a general ranking metric, called Dirichlet PageRank, which gives a ranking of vertices in a subset S of nodes subject to some specified conditions on the vertex boundary of S. In addition to the usual Dirichlet boundary condition (which disregards the influence of nodes outside of S), we consider general boundary conditions allowing the presence of negative (distrustful) nodes or edges. We give an efficient approximation algorithm for computing Dirichlet PageRank vectors. Furthermore, we give several algorithms for solving various trust-based ranking problems using Dirichlet PageRank with general boundary conditions.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"9 1","pages":"113 - 134"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.678194","citationCount":"15","resultStr":"{\"title\":\"Dirichlet PageRank and Ranking Algorithms Based on Trust and Distrust\",\"authors\":\"F. Graham, Alexander Tsiatas, Wensong Xu\",\"doi\":\"10.1080/15427951.2012.678194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by numerous models of representing trust and distrust within a network ranking system, we examine a quantitative vertex ranking with consideration of the influence of a subset of nodes. We propose and analyze a general ranking metric, called Dirichlet PageRank, which gives a ranking of vertices in a subset S of nodes subject to some specified conditions on the vertex boundary of S. In addition to the usual Dirichlet boundary condition (which disregards the influence of nodes outside of S), we consider general boundary conditions allowing the presence of negative (distrustful) nodes or edges. We give an efficient approximation algorithm for computing Dirichlet PageRank vectors. Furthermore, we give several algorithms for solving various trust-based ranking problems using Dirichlet PageRank with general boundary conditions.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"9 1\",\"pages\":\"113 - 134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2012.678194\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2012.678194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2012.678194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 15

摘要

在网络排名系统中,基于众多表示信任和不信任的模型,我们研究了一个考虑节点子集影响的定量顶点排名。我们提出并分析了一种称为Dirichlet PageRank的通用排名度量,它给出了S的顶点边界上某些特定条件下节点子集S中的顶点排名。除了通常的Dirichlet边界条件(忽略S外节点的影响)之外,我们还考虑了允许存在负(不信任)节点或边的一般边界条件。本文给出了一种计算Dirichlet PageRank向量的有效近似算法。此外,我们还给出了几种基于信任的排序问题的算法,这些算法使用Dirichlet PageRank在一般边界条件下进行求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirichlet PageRank and Ranking Algorithms Based on Trust and Distrust
Motivated by numerous models of representing trust and distrust within a network ranking system, we examine a quantitative vertex ranking with consideration of the influence of a subset of nodes. We propose and analyze a general ranking metric, called Dirichlet PageRank, which gives a ranking of vertices in a subset S of nodes subject to some specified conditions on the vertex boundary of S. In addition to the usual Dirichlet boundary condition (which disregards the influence of nodes outside of S), we consider general boundary conditions allowing the presence of negative (distrustful) nodes or edges. We give an efficient approximation algorithm for computing Dirichlet PageRank vectors. Furthermore, we give several algorithms for solving various trust-based ranking problems using Dirichlet PageRank with general boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信