随机阿波罗网络的一些性质

Q3 Mathematics
A. Frieze, Charalampos E. Tsourakakis
{"title":"随机阿波罗网络的一些性质","authors":"A. Frieze, Charalampos E. Tsourakakis","doi":"10.1080/15427951.2013.796300","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we analyze fundamental properties of random Apollonian networks [Zhang et al. 06, Zhou et al. 05], a popular random graph model that generates planar graphs with power-law properties. Specifically, we analyze the degree distribution, the k largest degrees, the k largest eigenvalues, and the diameter, where k is a constant.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"13 1","pages":"162 - 187"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2013.796300","citationCount":"14","resultStr":"{\"title\":\"Some Properties of Random Apollonian Networks\",\"authors\":\"A. Frieze, Charalampos E. Tsourakakis\",\"doi\":\"10.1080/15427951.2013.796300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we analyze fundamental properties of random Apollonian networks [Zhang et al. 06, Zhou et al. 05], a popular random graph model that generates planar graphs with power-law properties. Specifically, we analyze the degree distribution, the k largest degrees, the k largest eigenvalues, and the diameter, where k is a constant.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"13 1\",\"pages\":\"162 - 187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2013.796300\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2013.796300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2013.796300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14

摘要

在这项工作中,我们分析了随机Apollonian网络的基本性质[Zhang et al. 06, Zhou et al. 05],这是一种流行的随机图模型,可以生成具有幂律性质的平面图。具体来说,我们分析度分布、k个最大度、k个最大特征值和直径,其中k是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Properties of Random Apollonian Networks
Abstract In this work, we analyze fundamental properties of random Apollonian networks [Zhang et al. 06, Zhou et al. 05], a popular random graph model that generates planar graphs with power-law properties. Specifically, we analyze the degree distribution, the k largest degrees, the k largest eigenvalues, and the diameter, where k is a constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信