{"title":"随机阿波罗网络的一些性质","authors":"A. Frieze, Charalampos E. Tsourakakis","doi":"10.1080/15427951.2013.796300","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we analyze fundamental properties of random Apollonian networks [Zhang et al. 06, Zhou et al. 05], a popular random graph model that generates planar graphs with power-law properties. Specifically, we analyze the degree distribution, the k largest degrees, the k largest eigenvalues, and the diameter, where k is a constant.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"13 1","pages":"162 - 187"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2013.796300","citationCount":"14","resultStr":"{\"title\":\"Some Properties of Random Apollonian Networks\",\"authors\":\"A. Frieze, Charalampos E. Tsourakakis\",\"doi\":\"10.1080/15427951.2013.796300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we analyze fundamental properties of random Apollonian networks [Zhang et al. 06, Zhou et al. 05], a popular random graph model that generates planar graphs with power-law properties. Specifically, we analyze the degree distribution, the k largest degrees, the k largest eigenvalues, and the diameter, where k is a constant.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"13 1\",\"pages\":\"162 - 187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2013.796300\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2013.796300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2013.796300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14
摘要
在这项工作中,我们分析了随机Apollonian网络的基本性质[Zhang et al. 06, Zhou et al. 05],这是一种流行的随机图模型,可以生成具有幂律性质的平面图。具体来说,我们分析度分布、k个最大度、k个最大特征值和直径,其中k是常数。
Abstract In this work, we analyze fundamental properties of random Apollonian networks [Zhang et al. 06, Zhou et al. 05], a popular random graph model that generates planar graphs with power-law properties. Specifically, we analyze the degree distribution, the k largest degrees, the k largest eigenvalues, and the diameter, where k is a constant.