成对和列式通勤时间和Katz分数的快速矩阵计算

Q3 Mathematics
F. Bonchi, Pooya Esfandiar, D. Gleich, C. Greif, L. Lakshmanan
{"title":"成对和列式通勤时间和Katz分数的快速矩阵计算","authors":"F. Bonchi, Pooya Esfandiar, D. Gleich, C. Greif, L. Lakshmanan","doi":"10.1080/15427951.2012.625256","DOIUrl":null,"url":null,"abstract":"Abstract We explore methods for approximating the commute time and Katz score between a pair of nodes. These methods are based on the approach of matrices, moments, and quadrature developed in the numerical linear algebra community. They rely on the Lanczos process and provide upper and lower bounds on an estimate of the pairwise scores. We also explore methods to approximate the commute times and Katz scores from a node to all other nodes in the graph. Here, our approach for the commute times is based on a variation of the conjugate gradient algorithm, and it provides an estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz scores is based on exploiting an empirical localization property of the Katz matrix. We adapt algorithms used for personalized PageRank computing to these Katz scores and theoretically show that this approach is convergent. We evaluate these methods on 17 real-world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show that our pairwise commute-time method and columnwise Katz algorithm both have attractive theoretical properties and empirical performance.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"8 1","pages":"112 - 73"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2012.625256","citationCount":"57","resultStr":"{\"title\":\"Fast Matrix Computations for Pairwise and Columnwise Commute Times and Katz Scores\",\"authors\":\"F. Bonchi, Pooya Esfandiar, D. Gleich, C. Greif, L. Lakshmanan\",\"doi\":\"10.1080/15427951.2012.625256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We explore methods for approximating the commute time and Katz score between a pair of nodes. These methods are based on the approach of matrices, moments, and quadrature developed in the numerical linear algebra community. They rely on the Lanczos process and provide upper and lower bounds on an estimate of the pairwise scores. We also explore methods to approximate the commute times and Katz scores from a node to all other nodes in the graph. Here, our approach for the commute times is based on a variation of the conjugate gradient algorithm, and it provides an estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz scores is based on exploiting an empirical localization property of the Katz matrix. We adapt algorithms used for personalized PageRank computing to these Katz scores and theoretically show that this approach is convergent. We evaluate these methods on 17 real-world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show that our pairwise commute-time method and columnwise Katz algorithm both have attractive theoretical properties and empirical performance.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"8 1\",\"pages\":\"112 - 73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2012.625256\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2012.625256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2012.625256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 57

摘要

摘要研究了一种近似节点间通勤时间和Katz分数的方法。这些方法是基于矩阵、矩和正交的方法在数值线性代数社区发展起来的。它们依赖于Lanczos过程,并提供两两得分估计的上限和下限。我们还探索了从一个节点到图中所有其他节点的通勤时间和Katz分数的近似方法。这里,我们的通勤时间方法是基于共轭梯度算法的一种变体,它提供了矩阵逆的所有对角线的估计。我们的Katz分数技术是基于利用Katz矩阵的经验定位特性。我们将用于个性化PageRank计算的算法适应于这些Katz分数,并在理论上表明这种方法是收敛的。我们在17个真实世界的图上评估了这些方法,这些图的大小从1000到1,000,000个节点不等。结果表明,我们的两两通勤时间方法和列式Katz算法都具有很好的理论性能和经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Matrix Computations for Pairwise and Columnwise Commute Times and Katz Scores
Abstract We explore methods for approximating the commute time and Katz score between a pair of nodes. These methods are based on the approach of matrices, moments, and quadrature developed in the numerical linear algebra community. They rely on the Lanczos process and provide upper and lower bounds on an estimate of the pairwise scores. We also explore methods to approximate the commute times and Katz scores from a node to all other nodes in the graph. Here, our approach for the commute times is based on a variation of the conjugate gradient algorithm, and it provides an estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz scores is based on exploiting an empirical localization property of the Katz matrix. We adapt algorithms used for personalized PageRank computing to these Katz scores and theoretically show that this approach is convergent. We evaluate these methods on 17 real-world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show that our pairwise commute-time method and columnwise Katz algorithm both have attractive theoretical properties and empirical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信