J. Teodoro, A. P. Gomes, A. T. Varela, F. V. Duarte, A. Rolo, C. Palmeira
{"title":"壳寡糖对正常和糖尿病大鼠肝脏和骨骼肌线粒体毒性的影响","authors":"J. Teodoro, A. P. Gomes, A. T. Varela, F. V. Duarte, A. Rolo, C. Palmeira","doi":"10.1080/15376516.2016.1222643","DOIUrl":null,"url":null,"abstract":"Abstract Diabetes and associated conditions are now considered a worldwide epidemic, with increasing costs and burdens with no cure yet developed. The chitin-derived glucosamine biopolymer chitosan has shown promising results when supplied to diabetic patients. However, no study has investigated the possible toxic side effects of chitosan treatments, in particular when regarding the most important bioenergetic organelle, mitochondria. As such, we aimed to understand if supplementation of chitosan to the diet of normal and diabetic rats could compromise mitochondrial function on two of the major organs involved in diabetes, obesity, and metabolic regulation, the liver and skeletal muscle. We supplemented the drinking water of normal Wistar and diabetic Goto–Kakizaki rats with 0.5% chitosan for 6 weeks. We show here that, in terms of hepatic bioenergetics, chitosan was relatively inert and had no major side effects. However, regarding skeletal muscle bioenergetics, chitosan significantly affected various bioenergetic parameters. As such, we conclude that chitosan, at the tested doses, is relatively safe for treatment of diabetic situations. Nonetheless, the potential for adverse toxicological side effects appears to be present, which might be relevant if higher doses are utilized.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15376516.2016.1222643","citationCount":"10","resultStr":"{\"title\":\"Hepatic and skeletal muscle mitochondrial toxicity of chitosan oligosaccharides of normal and diabetic rats\",\"authors\":\"J. Teodoro, A. P. Gomes, A. T. Varela, F. V. Duarte, A. Rolo, C. Palmeira\",\"doi\":\"10.1080/15376516.2016.1222643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Diabetes and associated conditions are now considered a worldwide epidemic, with increasing costs and burdens with no cure yet developed. The chitin-derived glucosamine biopolymer chitosan has shown promising results when supplied to diabetic patients. However, no study has investigated the possible toxic side effects of chitosan treatments, in particular when regarding the most important bioenergetic organelle, mitochondria. As such, we aimed to understand if supplementation of chitosan to the diet of normal and diabetic rats could compromise mitochondrial function on two of the major organs involved in diabetes, obesity, and metabolic regulation, the liver and skeletal muscle. We supplemented the drinking water of normal Wistar and diabetic Goto–Kakizaki rats with 0.5% chitosan for 6 weeks. We show here that, in terms of hepatic bioenergetics, chitosan was relatively inert and had no major side effects. However, regarding skeletal muscle bioenergetics, chitosan significantly affected various bioenergetic parameters. As such, we conclude that chitosan, at the tested doses, is relatively safe for treatment of diabetic situations. Nonetheless, the potential for adverse toxicological side effects appears to be present, which might be relevant if higher doses are utilized.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2016-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15376516.2016.1222643\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2016.1222643\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2016.1222643","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Hepatic and skeletal muscle mitochondrial toxicity of chitosan oligosaccharides of normal and diabetic rats
Abstract Diabetes and associated conditions are now considered a worldwide epidemic, with increasing costs and burdens with no cure yet developed. The chitin-derived glucosamine biopolymer chitosan has shown promising results when supplied to diabetic patients. However, no study has investigated the possible toxic side effects of chitosan treatments, in particular when regarding the most important bioenergetic organelle, mitochondria. As such, we aimed to understand if supplementation of chitosan to the diet of normal and diabetic rats could compromise mitochondrial function on two of the major organs involved in diabetes, obesity, and metabolic regulation, the liver and skeletal muscle. We supplemented the drinking water of normal Wistar and diabetic Goto–Kakizaki rats with 0.5% chitosan for 6 weeks. We show here that, in terms of hepatic bioenergetics, chitosan was relatively inert and had no major side effects. However, regarding skeletal muscle bioenergetics, chitosan significantly affected various bioenergetic parameters. As such, we conclude that chitosan, at the tested doses, is relatively safe for treatment of diabetic situations. Nonetheless, the potential for adverse toxicological side effects appears to be present, which might be relevant if higher doses are utilized.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.