一种贝叶斯方法识别活动位置和分散因素

I. Yu
{"title":"一种贝叶斯方法识别活动位置和分散因素","authors":"I. Yu","doi":"10.1080/0740817X.2015.1122252","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, we extend the modified Box–Meyer method and propose an approach to identify both active location and dispersion factors in a screening experiment. Since several candidate models can be simultaneously considered under the framework of Bayesian model averaging, the proposed method can overcome the problem of missing the identification of some active factors caused by either the alias structure or misspecification of the location model. For illustration, three practical experiments and one synthetic data set are analyzed.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"629 - 637"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1122252","citationCount":"2","resultStr":"{\"title\":\"A Bayesian approach to the identification of active location and dispersion factors\",\"authors\":\"I. Yu\",\"doi\":\"10.1080/0740817X.2015.1122252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, we extend the modified Box–Meyer method and propose an approach to identify both active location and dispersion factors in a screening experiment. Since several candidate models can be simultaneously considered under the framework of Bayesian model averaging, the proposed method can overcome the problem of missing the identification of some active factors caused by either the alias structure or misspecification of the location model. For illustration, three practical experiments and one synthetic data set are analyzed.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"629 - 637\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1122252\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1122252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1122252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们扩展了改进的Box-Meyer方法,并提出了一种在筛选实验中同时识别活性位置和分散因子的方法。由于在贝叶斯模型平均的框架下可以同时考虑多个候选模型,因此该方法可以克服由于位置模型的混叠结构或不规范导致的一些主动因素无法识别的问题。为了说明这一点,我们分析了三个实际实验和一个合成数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian approach to the identification of active location and dispersion factors
ABSTRACT In this article, we extend the modified Box–Meyer method and propose an approach to identify both active location and dispersion factors in a screening experiment. Since several candidate models can be simultaneously considered under the framework of Bayesian model averaging, the proposed method can overcome the problem of missing the identification of some active factors caused by either the alias structure or misspecification of the location model. For illustration, three practical experiments and one synthetic data set are analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信