通过学习隐藏数据结构实现不平衡分类

Yang Zhao, A. Shrivastava, K. Tsui
{"title":"通过学习隐藏数据结构实现不平衡分类","authors":"Yang Zhao, A. Shrivastava, K. Tsui","doi":"10.1080/0740817X.2015.1110269","DOIUrl":null,"url":null,"abstract":"ABSTRACT Approaches to solve the imbalanced classification problem usually focus on rebalancing the class sizes, neglecting the effect of the hidden structure within the majority class. The purpose of this article is to first highlight the effect of sub-clusters within the majority class on the detection of the minority instances and then handle the imbalanced classification problem by learning the structure in the data. We propose a decomposition-based approach to a two-class imbalanced classification problem. This approach works by first learning the hidden structure of the majority class using an unsupervised learning algorithm and thus transforming the classification problem into several classification sub-problems. The base classifier is constructed on each sub-problem. The ensemble is tuned to increase its sensitivity toward the minority class. We also provide a metric for selecting the clustering algorithm by comparing estimates of the stability of the decomposition, which appears necessary for good classifier performance. We demonstrate the performance of the proposed approach through various real data sets.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"614 - 628"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1110269","citationCount":"9","resultStr":"{\"title\":\"Imbalanced classification by learning hidden data structure\",\"authors\":\"Yang Zhao, A. Shrivastava, K. Tsui\",\"doi\":\"10.1080/0740817X.2015.1110269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Approaches to solve the imbalanced classification problem usually focus on rebalancing the class sizes, neglecting the effect of the hidden structure within the majority class. The purpose of this article is to first highlight the effect of sub-clusters within the majority class on the detection of the minority instances and then handle the imbalanced classification problem by learning the structure in the data. We propose a decomposition-based approach to a two-class imbalanced classification problem. This approach works by first learning the hidden structure of the majority class using an unsupervised learning algorithm and thus transforming the classification problem into several classification sub-problems. The base classifier is constructed on each sub-problem. The ensemble is tuned to increase its sensitivity toward the minority class. We also provide a metric for selecting the clustering algorithm by comparing estimates of the stability of the decomposition, which appears necessary for good classifier performance. We demonstrate the performance of the proposed approach through various real data sets.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"614 - 628\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1110269\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1110269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1110269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

解决不平衡分类问题的方法通常侧重于重新平衡类的大小,而忽略了大多数类中隐藏结构的影响。本文的目的是首先突出多数类中的子聚类对少数实例检测的影响,然后通过学习数据中的结构来处理不平衡分类问题。提出了一种基于分解的两类不平衡分类方法。该方法首先使用无监督学习算法学习多数类的隐藏结构,从而将分类问题转化为几个分类子问题。在每个子问题上构造基分类器。乐团调整以增加对少数族裔的敏感度。我们还提供了一个度量,通过比较分解稳定性的估计来选择聚类算法,这似乎是良好分类器性能所必需的。我们通过各种真实数据集证明了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imbalanced classification by learning hidden data structure
ABSTRACT Approaches to solve the imbalanced classification problem usually focus on rebalancing the class sizes, neglecting the effect of the hidden structure within the majority class. The purpose of this article is to first highlight the effect of sub-clusters within the majority class on the detection of the minority instances and then handle the imbalanced classification problem by learning the structure in the data. We propose a decomposition-based approach to a two-class imbalanced classification problem. This approach works by first learning the hidden structure of the majority class using an unsupervised learning algorithm and thus transforming the classification problem into several classification sub-problems. The base classifier is constructed on each sub-problem. The ensemble is tuned to increase its sensitivity toward the minority class. We also provide a metric for selecting the clustering algorithm by comparing estimates of the stability of the decomposition, which appears necessary for good classifier performance. We demonstrate the performance of the proposed approach through various real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信