具有私有信息约束的随机规划的节点分解-协调

E. Beier, Saravanan Venkatachalam, V. Leon, Lewis Ntaimo
{"title":"具有私有信息约束的随机规划的节点分解-协调","authors":"E. Beier, Saravanan Venkatachalam, V. Leon, Lewis Ntaimo","doi":"10.1080/0740817X.2015.1055390","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a nodal decomposition–coordination method for stochastic programs with private data (information) restrictions. We consider coordinated systems where a single optimal or close-to-optimal solution is desired. However, because of competitive issues, confidentiality requirements, incompatible database issues, or other complicating factors, no global view of the system is possible. In our iterative methodology, each entity in the cooperation forms its own nodal deterministic or stochastic program. We use Lagrangian relaxation and subgradient optimization techniques to facilitate negotiation between the nodal decisions in the system without any one entity gaining access to the private information from other nodes. We perform a computational study on supply chain inventory coordination problem instances. The results demonstrate that the new methodology can obtain solution values that are close to the optimal within a stipulated time without violating private information restrictions. The results also show that the stochastic solutions outperform the corresponding expected value solutions.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"283 - 297"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1055390","citationCount":"5","resultStr":"{\"title\":\"Nodal decomposition–coordination for stochastic programs with private information restrictions\",\"authors\":\"E. Beier, Saravanan Venkatachalam, V. Leon, Lewis Ntaimo\",\"doi\":\"10.1080/0740817X.2015.1055390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We present a nodal decomposition–coordination method for stochastic programs with private data (information) restrictions. We consider coordinated systems where a single optimal or close-to-optimal solution is desired. However, because of competitive issues, confidentiality requirements, incompatible database issues, or other complicating factors, no global view of the system is possible. In our iterative methodology, each entity in the cooperation forms its own nodal deterministic or stochastic program. We use Lagrangian relaxation and subgradient optimization techniques to facilitate negotiation between the nodal decisions in the system without any one entity gaining access to the private information from other nodes. We perform a computational study on supply chain inventory coordination problem instances. The results demonstrate that the new methodology can obtain solution values that are close to the optimal within a stipulated time without violating private information restrictions. The results also show that the stochastic solutions outperform the corresponding expected value solutions.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"283 - 297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1055390\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1055390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1055390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

摘要针对具有私有数据(信息)限制的随机规划,提出了一种节点分解-协调方法。我们考虑需要单个最优或接近最优解的协调系统。但是,由于竞争问题、机密性要求、不兼容的数据库问题或其他复杂因素,不可能实现系统的全局视图。在我们的迭代方法中,合作中的每个实体形成自己的节点确定性或随机计划。我们使用拉格朗日松弛和次梯度优化技术来促进系统中节点决策之间的协商,而不需要任何一个实体访问其他节点的私有信息。本文对供应链库存协调问题实例进行了计算研究。结果表明,该方法可以在不违反私有信息限制的情况下,在规定的时间内获得接近最优的解值。结果还表明,随机解优于相应的期望值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nodal decomposition–coordination for stochastic programs with private information restrictions
ABSTRACT We present a nodal decomposition–coordination method for stochastic programs with private data (information) restrictions. We consider coordinated systems where a single optimal or close-to-optimal solution is desired. However, because of competitive issues, confidentiality requirements, incompatible database issues, or other complicating factors, no global view of the system is possible. In our iterative methodology, each entity in the cooperation forms its own nodal deterministic or stochastic program. We use Lagrangian relaxation and subgradient optimization techniques to facilitate negotiation between the nodal decisions in the system without any one entity gaining access to the private information from other nodes. We perform a computational study on supply chain inventory coordination problem instances. The results demonstrate that the new methodology can obtain solution values that are close to the optimal within a stipulated time without violating private information restrictions. The results also show that the stochastic solutions outperform the corresponding expected value solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信