Rui Liu, Meiruo Xiang, Luke C. Pilling, David Melzer, Lihong Wang, Kevin J. Manning, David C. Steffens, Jack Bowden, Richard H. Fortinsky, George A. Kuchel, Taeho G. Rhee, Breno S. Diniz, Chia-Ling Kuo
{"title":"中年白细胞端粒长度与痴呆风险:435,046名英国生物银行参与者的观察性孟德尔随机研究","authors":"Rui Liu, Meiruo Xiang, Luke C. Pilling, David Melzer, Lihong Wang, Kevin J. Manning, David C. Steffens, Jack Bowden, Richard H. Fortinsky, George A. Kuchel, Taeho G. Rhee, Breno S. Diniz, Chia-Ling Kuo","doi":"10.1111/acel.13808","DOIUrl":null,"url":null,"abstract":"<p>Telomere attrition is one of biological aging hallmarks and may be intervened to target multiple aging-related diseases, including Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The objective of this study was to assess associations of leukocyte telomere length (TL) with AD/ADRD and early markers of AD/ADRD, including cognitive performance and brain magnetic resonance imaging (MRI) phenotypes. Data from European-ancestry participants in the UK Biobank (<i>n</i> = 435,046) were used to evaluate whether mid-life leukocyte TL is associated with incident AD/ADRD over a mean follow-up of 12.2 years. In a subsample without AD/ADRD and with brain imaging data (<i>n</i> = 43,390), we associated TL with brain MRI phenotypes related to AD or vascular dementia pathology. Longer TL was associated with a lower risk of incident AD/ADRD (adjusted Hazard Ratio [aHR] per SD = 0.93, 95% CI 0.90–0.96, <i>p</i> = 3.37 × 10<sup>−7</sup>). Longer TL also was associated with better cognitive performance in specific cognitive domains, larger hippocampus volume, lower total volume of white matter hyperintensities, and higher fractional anisotropy and lower mean diffusivity in the fornix. In conclusion, longer TL is inversely associated with AD/ADRD, cognitive impairment, and brain structural lesions toward the development of AD/ADRD. However, the relationships between genetically determined TL and the outcomes above were not statistically significant based on the results from Mendelian randomization analysis results. Our findings add to the literature of prioritizing risk for AD/ADRD. The causality needs to be ascertained in mechanistic studies.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 7","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13808","citationCount":"0","resultStr":"{\"title\":\"Mid-life leukocyte telomere length and dementia risk: An observational and mendelian randomization study of 435,046 UK Biobank participants\",\"authors\":\"Rui Liu, Meiruo Xiang, Luke C. Pilling, David Melzer, Lihong Wang, Kevin J. Manning, David C. Steffens, Jack Bowden, Richard H. Fortinsky, George A. Kuchel, Taeho G. Rhee, Breno S. Diniz, Chia-Ling Kuo\",\"doi\":\"10.1111/acel.13808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Telomere attrition is one of biological aging hallmarks and may be intervened to target multiple aging-related diseases, including Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The objective of this study was to assess associations of leukocyte telomere length (TL) with AD/ADRD and early markers of AD/ADRD, including cognitive performance and brain magnetic resonance imaging (MRI) phenotypes. Data from European-ancestry participants in the UK Biobank (<i>n</i> = 435,046) were used to evaluate whether mid-life leukocyte TL is associated with incident AD/ADRD over a mean follow-up of 12.2 years. In a subsample without AD/ADRD and with brain imaging data (<i>n</i> = 43,390), we associated TL with brain MRI phenotypes related to AD or vascular dementia pathology. Longer TL was associated with a lower risk of incident AD/ADRD (adjusted Hazard Ratio [aHR] per SD = 0.93, 95% CI 0.90–0.96, <i>p</i> = 3.37 × 10<sup>−7</sup>). Longer TL also was associated with better cognitive performance in specific cognitive domains, larger hippocampus volume, lower total volume of white matter hyperintensities, and higher fractional anisotropy and lower mean diffusivity in the fornix. In conclusion, longer TL is inversely associated with AD/ADRD, cognitive impairment, and brain structural lesions toward the development of AD/ADRD. However, the relationships between genetically determined TL and the outcomes above were not statistically significant based on the results from Mendelian randomization analysis results. Our findings add to the literature of prioritizing risk for AD/ADRD. The causality needs to be ascertained in mechanistic studies.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"22 7\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13808\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.13808\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.13808","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
端粒磨损是生物衰老的标志之一,可以干预多种衰老相关疾病,包括阿尔茨海默病和阿尔茨海默病相关痴呆(AD/ADRD)。本研究的目的是评估白细胞端粒长度(TL)与AD/ADRD以及AD/ADRD的早期标志物(包括认知能力和脑磁共振成像(MRI)表型)之间的关系。来自英国生物银行欧洲血统参与者的数据(n = 435,046)被用来评估中年白细胞TL是否与AD/ADRD事件相关,平均随访12.2年。在一个没有AD/ADRD和有脑成像数据的亚样本中(n = 43,390),我们将TL与与AD或血管性痴呆病理相关的脑MRI表型联系起来。较长的TL与较低的AD/ADRD发生风险相关(校正风险比[aHR]每SD = 0.93, 95% CI 0.90-0.96, p = 3.37 × 10−7)。更长的TL还与特定认知领域的更好认知表现、更大的海马体积、更低的白质高密度总体积、更高的分数各向异性和更低的穹窿平均扩散率相关。综上所述,较长的睡眠时间与AD/ADRD、认知功能障碍和AD/ADRD发生的脑结构病变呈负相关。然而,根据孟德尔随机化分析结果,遗传决定的TL与上述结果之间的关系没有统计学意义。我们的发现增加了AD/ADRD风险优先级的文献。在机械研究中,需要确定因果关系。
Mid-life leukocyte telomere length and dementia risk: An observational and mendelian randomization study of 435,046 UK Biobank participants
Telomere attrition is one of biological aging hallmarks and may be intervened to target multiple aging-related diseases, including Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The objective of this study was to assess associations of leukocyte telomere length (TL) with AD/ADRD and early markers of AD/ADRD, including cognitive performance and brain magnetic resonance imaging (MRI) phenotypes. Data from European-ancestry participants in the UK Biobank (n = 435,046) were used to evaluate whether mid-life leukocyte TL is associated with incident AD/ADRD over a mean follow-up of 12.2 years. In a subsample without AD/ADRD and with brain imaging data (n = 43,390), we associated TL with brain MRI phenotypes related to AD or vascular dementia pathology. Longer TL was associated with a lower risk of incident AD/ADRD (adjusted Hazard Ratio [aHR] per SD = 0.93, 95% CI 0.90–0.96, p = 3.37 × 10−7). Longer TL also was associated with better cognitive performance in specific cognitive domains, larger hippocampus volume, lower total volume of white matter hyperintensities, and higher fractional anisotropy and lower mean diffusivity in the fornix. In conclusion, longer TL is inversely associated with AD/ADRD, cognitive impairment, and brain structural lesions toward the development of AD/ADRD. However, the relationships between genetically determined TL and the outcomes above were not statistically significant based on the results from Mendelian randomization analysis results. Our findings add to the literature of prioritizing risk for AD/ADRD. The causality needs to be ascertained in mechanistic studies.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.