{"title":"无缝生物界面的电子组织技术","authors":"Ivan R. Minev","doi":"10.1002/pol.20230111","DOIUrl":null,"url":null,"abstract":"<p>Bioelectronic interfaces establish a communication channel between a living system and an electrical machine. The first examples emerged in the 18th century when batteries were used to “galvanize” muscles and nerves. Today bioelectronic interfaces underpin key medical technologies such as the cardiac pacemaker and emerging ones such as neuroprostheses and brain-machine interfaces. Despite compelling applications in living systems, bioelectronic interfaces employ materials from microelectronics that are rigid, impermeable to water and bioinert. In contrast, electrical phenomena in soft tissues such as muscle and nerve are mediated by ions and molecules solvated in water. This disparity leads to missed opportunities for achieving seamless interfaces and communication that extends beyond electrical stimulation and recording. In this perspective, I discuss opportunities presented by hydrogel materials for building bioelectronic interfaces. This will require new types of hydrogels that support both ionic and electronic conductivity combined with key functions of the extracellular matrix.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 16","pages":"1707-1712"},"PeriodicalIF":2.7020,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230111","citationCount":"1","resultStr":"{\"title\":\"Electronic tissue technologies for seamless biointerfaces\",\"authors\":\"Ivan R. Minev\",\"doi\":\"10.1002/pol.20230111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioelectronic interfaces establish a communication channel between a living system and an electrical machine. The first examples emerged in the 18th century when batteries were used to “galvanize” muscles and nerves. Today bioelectronic interfaces underpin key medical technologies such as the cardiac pacemaker and emerging ones such as neuroprostheses and brain-machine interfaces. Despite compelling applications in living systems, bioelectronic interfaces employ materials from microelectronics that are rigid, impermeable to water and bioinert. In contrast, electrical phenomena in soft tissues such as muscle and nerve are mediated by ions and molecules solvated in water. This disparity leads to missed opportunities for achieving seamless interfaces and communication that extends beyond electrical stimulation and recording. In this perspective, I discuss opportunities presented by hydrogel materials for building bioelectronic interfaces. This will require new types of hydrogels that support both ionic and electronic conductivity combined with key functions of the extracellular matrix.</p>\",\"PeriodicalId\":199,\"journal\":{\"name\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"volume\":\"61 16\",\"pages\":\"1707-1712\"},\"PeriodicalIF\":2.7020,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230111\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Electronic tissue technologies for seamless biointerfaces
Bioelectronic interfaces establish a communication channel between a living system and an electrical machine. The first examples emerged in the 18th century when batteries were used to “galvanize” muscles and nerves. Today bioelectronic interfaces underpin key medical technologies such as the cardiac pacemaker and emerging ones such as neuroprostheses and brain-machine interfaces. Despite compelling applications in living systems, bioelectronic interfaces employ materials from microelectronics that are rigid, impermeable to water and bioinert. In contrast, electrical phenomena in soft tissues such as muscle and nerve are mediated by ions and molecules solvated in water. This disparity leads to missed opportunities for achieving seamless interfaces and communication that extends beyond electrical stimulation and recording. In this perspective, I discuss opportunities presented by hydrogel materials for building bioelectronic interfaces. This will require new types of hydrogels that support both ionic and electronic conductivity combined with key functions of the extracellular matrix.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...