软逻辑和数字

IF 0.5 3区 文学 0 LANGUAGE & LINGUISTICS
Moshe Klein, O. Maimon
{"title":"软逻辑和数字","authors":"Moshe Klein, O. Maimon","doi":"10.1075/PC.23.3.09KLE","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to see the Necker cube phenomenon as a basis for the development of a mathematical language in accordance with Leibniz’s vision of soft logic. By the development of a new coordinate system, we make a distinction between −0 and +0. This distinction enables us to present a new model for nonstandard analysis, and to develop a calculus theory without the need of the concept of limit. We also established a connection between “Recursive Distinctioning” and soft logic, and use it as a basis for a new computational model. This model has a potential to change the current computational paradigm.","PeriodicalId":45741,"journal":{"name":"Pragmatics & Cognition","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1075/PC.23.3.09KLE","citationCount":"2","resultStr":"{\"title\":\"Soft logic and numbers\",\"authors\":\"Moshe Klein, O. Maimon\",\"doi\":\"10.1075/PC.23.3.09KLE\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to see the Necker cube phenomenon as a basis for the development of a mathematical language in accordance with Leibniz’s vision of soft logic. By the development of a new coordinate system, we make a distinction between −0 and +0. This distinction enables us to present a new model for nonstandard analysis, and to develop a calculus theory without the need of the concept of limit. We also established a connection between “Recursive Distinctioning” and soft logic, and use it as a basis for a new computational model. This model has a potential to change the current computational paradigm.\",\"PeriodicalId\":45741,\"journal\":{\"name\":\"Pragmatics & Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1075/PC.23.3.09KLE\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pragmatics & Cognition\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1075/PC.23.3.09KLE\",\"RegionNum\":3,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pragmatics & Cognition","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1075/PC.23.3.09KLE","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们建议将内克尔立方体现象视为根据莱布尼茨的软逻辑愿景发展数学语言的基础。通过发展一种新的坐标系,我们区分了- 0和+0。这种区别使我们能够提出一种新的非标准分析模型,并在不需要极限概念的情况下发展微积分理论。我们还建立了“递归区分”与软逻辑之间的联系,并将其作为新的计算模型的基础。这个模型有可能改变当前的计算范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft logic and numbers
In this paper, we propose to see the Necker cube phenomenon as a basis for the development of a mathematical language in accordance with Leibniz’s vision of soft logic. By the development of a new coordinate system, we make a distinction between −0 and +0. This distinction enables us to present a new model for nonstandard analysis, and to develop a calculus theory without the need of the concept of limit. We also established a connection between “Recursive Distinctioning” and soft logic, and use it as a basis for a new computational model. This model has a potential to change the current computational paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信