控制论的数论部分

IF 1.4 4区 数学 Q1 MATHEMATICS
Aleksandr Iosifovich Ovseevich
{"title":"控制论的数论部分","authors":"Aleksandr Iosifovich Ovseevich","doi":"10.1070/RM10050","DOIUrl":null,"url":null,"abstract":"The importance of Q is primarily due to the fact that it defines a common Lyapunov function for the two stable matrices M = −diag(1, 2, . . . , N) and A + BC, where Aei = −iei+1 for i = 1, . . . , N , B = e1, and C = −(1/2)B∗Q. Here the ei, i = 1, . . . , N , form the standard basis of R and eN+1 = 0. In [6] it was shown that Q is an even integer matrix, that is, Qij ∈ 2Z, and it was conjectured that all elements of the matrix are divisible by N(N + 1). The proofs in [6] were based on considering orthogonal polynomials. Here we prove this conjecture using similar methods.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"77 1","pages":"369 - 371"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A number-theoretic part of control theory\",\"authors\":\"Aleksandr Iosifovich Ovseevich\",\"doi\":\"10.1070/RM10050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of Q is primarily due to the fact that it defines a common Lyapunov function for the two stable matrices M = −diag(1, 2, . . . , N) and A + BC, where Aei = −iei+1 for i = 1, . . . , N , B = e1, and C = −(1/2)B∗Q. Here the ei, i = 1, . . . , N , form the standard basis of R and eN+1 = 0. In [6] it was shown that Q is an even integer matrix, that is, Qij ∈ 2Z, and it was conjectured that all elements of the matrix are divisible by N(N + 1). The proofs in [6] were based on considering orthogonal polynomials. Here we prove this conjecture using similar methods.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"77 1\",\"pages\":\"369 - 371\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10050\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Q的重要性主要是由于它为两个稳定矩阵M = - diag(1,2,…)定义了一个公共Lyapunov函数。, N)和A + BC,其中对于i = 1, Aei =−iei+1,…, N, B = e1,且C =−(1/2)B * Q。这里是ei, i = 1,…, N,构成R和eN+1 = 0的标准基。[6]中证明了Q是一个偶数矩阵,即Qij∈2Z,并推测了矩阵的所有元素都可以被N(N + 1)整除。[6]中的证明是基于考虑正交多项式的。这里我们用类似的方法证明了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A number-theoretic part of control theory
The importance of Q is primarily due to the fact that it defines a common Lyapunov function for the two stable matrices M = −diag(1, 2, . . . , N) and A + BC, where Aei = −iei+1 for i = 1, . . . , N , B = e1, and C = −(1/2)B∗Q. Here the ei, i = 1, . . . , N , form the standard basis of R and eN+1 = 0. In [6] it was shown that Q is an even integer matrix, that is, Qij ∈ 2Z, and it was conjectured that all elements of the matrix are divisible by N(N + 1). The proofs in [6] were based on considering orthogonal polynomials. Here we prove this conjecture using similar methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信