控制论的数论部分

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aleksandr Iosifovich Ovseevich
{"title":"控制论的数论部分","authors":"Aleksandr Iosifovich Ovseevich","doi":"10.1070/RM10050","DOIUrl":null,"url":null,"abstract":"The importance of Q is primarily due to the fact that it defines a common Lyapunov function for the two stable matrices M = −diag(1, 2, . . . , N) and A + BC, where Aei = −iei+1 for i = 1, . . . , N , B = e1, and C = −(1/2)B∗Q. Here the ei, i = 1, . . . , N , form the standard basis of R and eN+1 = 0. In [6] it was shown that Q is an even integer matrix, that is, Qij ∈ 2Z, and it was conjectured that all elements of the matrix are divisible by N(N + 1). The proofs in [6] were based on considering orthogonal polynomials. Here we prove this conjecture using similar methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A number-theoretic part of control theory\",\"authors\":\"Aleksandr Iosifovich Ovseevich\",\"doi\":\"10.1070/RM10050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of Q is primarily due to the fact that it defines a common Lyapunov function for the two stable matrices M = −diag(1, 2, . . . , N) and A + BC, where Aei = −iei+1 for i = 1, . . . , N , B = e1, and C = −(1/2)B∗Q. Here the ei, i = 1, . . . , N , form the standard basis of R and eN+1 = 0. In [6] it was shown that Q is an even integer matrix, that is, Qij ∈ 2Z, and it was conjectured that all elements of the matrix are divisible by N(N + 1). The proofs in [6] were based on considering orthogonal polynomials. Here we prove this conjecture using similar methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10050\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Q的重要性主要是由于它为两个稳定矩阵M = - diag(1,2,…)定义了一个公共Lyapunov函数。, N)和A + BC,其中对于i = 1, Aei =−iei+1,…, N, B = e1,且C =−(1/2)B * Q。这里是ei, i = 1,…, N,构成R和eN+1 = 0的标准基。[6]中证明了Q是一个偶数矩阵,即Qij∈2Z,并推测了矩阵的所有元素都可以被N(N + 1)整除。[6]中的证明是基于考虑正交多项式的。这里我们用类似的方法证明了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A number-theoretic part of control theory
The importance of Q is primarily due to the fact that it defines a common Lyapunov function for the two stable matrices M = −diag(1, 2, . . . , N) and A + BC, where Aei = −iei+1 for i = 1, . . . , N , B = e1, and C = −(1/2)B∗Q. Here the ei, i = 1, . . . , N , form the standard basis of R and eN+1 = 0. In [6] it was shown that Q is an even integer matrix, that is, Qij ∈ 2Z, and it was conjectured that all elements of the matrix are divisible by N(N + 1). The proofs in [6] were based on considering orthogonal polynomials. Here we prove this conjecture using similar methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信