{"title":"双曲型方程组解中的非经典不连续结构","authors":"A. Kulikovskii, A. P. Chugainova","doi":"10.1070/RM10033","DOIUrl":null,"url":null,"abstract":"Discontinuity structures in solutions of a hyperbolic system of equations are considered. The system of equations has a rather general form and, in particular, can describe the longitudinal and torsional non-linear waves in elastic rods in the simplest setting and also one-dimensional waves in unbounded elastic media. The properties of discontinuities in solutions of these equations have been investigated earlier under the assumption that only the relations following from the conservation laws for the longitudinal momentum and angular momentum about the axis of the rod and the displacement continuity condition hold on the discontinuities. The shock adiabat has been studied. This paper deals with stationary discontinuity structures under the assumption that viscosity is the main governing mechanism inside the structure. Some segments of the shock adiabat are shown to correspond to evolutionary discontinuities without structure. It is also shown that there are special discontinuities on which an additional relation must hold, which arises from the condition that a discontinuity structure exists. The additional relation depends on the processes in the structure. Special discontinuities satisfy evolutionary conditions that differ from the well-known Lax conditions. Conclusions are discussed, which can also be of interest in the case of other systems of hyperbolic equations. Bibliography: 58 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"77 1","pages":"47 - 79"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structures of non-classical discontinuities in solutions of hyperbolic systems of equations\",\"authors\":\"A. Kulikovskii, A. P. Chugainova\",\"doi\":\"10.1070/RM10033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discontinuity structures in solutions of a hyperbolic system of equations are considered. The system of equations has a rather general form and, in particular, can describe the longitudinal and torsional non-linear waves in elastic rods in the simplest setting and also one-dimensional waves in unbounded elastic media. The properties of discontinuities in solutions of these equations have been investigated earlier under the assumption that only the relations following from the conservation laws for the longitudinal momentum and angular momentum about the axis of the rod and the displacement continuity condition hold on the discontinuities. The shock adiabat has been studied. This paper deals with stationary discontinuity structures under the assumption that viscosity is the main governing mechanism inside the structure. Some segments of the shock adiabat are shown to correspond to evolutionary discontinuities without structure. It is also shown that there are special discontinuities on which an additional relation must hold, which arises from the condition that a discontinuity structure exists. The additional relation depends on the processes in the structure. Special discontinuities satisfy evolutionary conditions that differ from the well-known Lax conditions. Conclusions are discussed, which can also be of interest in the case of other systems of hyperbolic equations. Bibliography: 58 titles.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"77 1\",\"pages\":\"47 - 79\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Structures of non-classical discontinuities in solutions of hyperbolic systems of equations
Discontinuity structures in solutions of a hyperbolic system of equations are considered. The system of equations has a rather general form and, in particular, can describe the longitudinal and torsional non-linear waves in elastic rods in the simplest setting and also one-dimensional waves in unbounded elastic media. The properties of discontinuities in solutions of these equations have been investigated earlier under the assumption that only the relations following from the conservation laws for the longitudinal momentum and angular momentum about the axis of the rod and the displacement continuity condition hold on the discontinuities. The shock adiabat has been studied. This paper deals with stationary discontinuity structures under the assumption that viscosity is the main governing mechanism inside the structure. Some segments of the shock adiabat are shown to correspond to evolutionary discontinuities without structure. It is also shown that there are special discontinuities on which an additional relation must hold, which arises from the condition that a discontinuity structure exists. The additional relation depends on the processes in the structure. Special discontinuities satisfy evolutionary conditions that differ from the well-known Lax conditions. Conclusions are discussed, which can also be of interest in the case of other systems of hyperbolic equations. Bibliography: 58 titles.
期刊介绍:
Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.