德龙集合中的局部群:一个猜想与结果

IF 1.4 4区 数学 Q1 MATHEMATICS
N. Dolbilin, M. Shtogrin
{"title":"德龙集合中的局部群:一个猜想与结果","authors":"N. Dolbilin, M. Shtogrin","doi":"10.1070/RM10037","DOIUrl":null,"url":null,"abstract":"In the framework of a new approach to the concept of local symmetry in arbitrary Delone sets we obtain new results for such sets without any restrictions. These results have important consequences for lattices and regular systems. A conjecture about the crystal kernel is stated, which generalises significantly the classical theorem on the non-existence of a five-fold symmetry in three-dimensional lattices. The following theorems related to the foundations of geometric crystallography are proved.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"1137 - 1139"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local groups in Delone sets: a conjecture and results\",\"authors\":\"N. Dolbilin, M. Shtogrin\",\"doi\":\"10.1070/RM10037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of a new approach to the concept of local symmetry in arbitrary Delone sets we obtain new results for such sets without any restrictions. These results have important consequences for lattices and regular systems. A conjecture about the crystal kernel is stated, which generalises significantly the classical theorem on the non-existence of a five-fold symmetry in three-dimensional lattices. The following theorems related to the foundations of geometric crystallography are proved.\",\"PeriodicalId\":49582,\"journal\":{\"name\":\"Russian Mathematical Surveys\",\"volume\":\"76 1\",\"pages\":\"1137 - 1139\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematical Surveys\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/RM10037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM10037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在对任意Delone集合局部对称概念的一种新方法的框架下,我们得到了不受任何限制的任意Delone集合的新结果。这些结果对晶格和规则系统具有重要意义。提出了一个关于晶体核的猜想,它极大地推广了三维晶格中五重对称不存在的经典定理。证明了下列与几何晶体学基础有关的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local groups in Delone sets: a conjecture and results
In the framework of a new approach to the concept of local symmetry in arbitrary Delone sets we obtain new results for such sets without any restrictions. These results have important consequences for lattices and regular systems. A conjecture about the crystal kernel is stated, which generalises significantly the classical theorem on the non-existence of a five-fold symmetry in three-dimensional lattices. The following theorems related to the foundations of geometric crystallography are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信